Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 114 x^{2} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.121722128725$, $\pm0.878277871275$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-11}, \sqrt{17})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $150$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6128$ | $37552384$ | $243088108400$ | $1517068847386624$ | $9468276087402735728$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6014$ | $493040$ | $38949054$ | $3077056400$ | $243088761278$ | $19203908986160$ | $1517108965178494$ | $119851595982618320$ | $9468276092178624254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 150 curves (of which all are hyperelliptic):
- $y^2=40 x^6+33 x^5+66 x^4+63 x^3+44 x^2+41 x+6$
- $y^2=35 x^6+21 x^5+50 x^4+15 x^3+6 x^2+31 x+18$
- $y^2=26 x^6+63 x^5+71 x^4+45 x^3+18 x^2+14 x+54$
- $y^2=54 x^6+33 x^5+51 x^4+3 x^3+73 x^2+74 x+67$
- $y^2=52 x^6+23 x^5+25 x^4+68 x^3+37 x^2+37 x+10$
- $y^2=21 x^6+23 x^5+72 x^4+5 x^3+78 x^2+67 x+28$
- $y^2=63 x^6+69 x^5+58 x^4+15 x^3+76 x^2+43 x+5$
- $y^2=54 x^6+13 x^5+60 x^4+40 x^3+76 x^2+38 x+40$
- $y^2=4 x^6+39 x^5+22 x^4+41 x^3+70 x^2+35 x+41$
- $y^2=33 x^6+76 x^5+15 x^4+32 x^3+17 x^2+70 x+54$
- $y^2=58 x^6+31 x^5+33 x^4+46 x^3+21 x^2+72 x+12$
- $y^2=16 x^6+14 x^5+20 x^4+59 x^3+63 x^2+58 x+36$
- $y^2=50 x^6+2 x^5+31 x^4+74 x^3+57 x^2+71 x+10$
- $y^2=21 x^6+40 x^5+15 x^4+20 x^3+78 x^2+54 x+4$
- $y^2=63 x^6+41 x^5+45 x^4+60 x^3+76 x^2+4 x+12$
- $y^2=55 x^6+23 x^5+78 x^4+3 x^3+40 x^2+58 x+32$
- $y^2=7 x^6+69 x^5+76 x^4+9 x^3+41 x^2+16 x+17$
- $y^2=7 x^6+52 x^5+43 x^4+71 x^3+2 x^2+47 x+76$
- $y^2=25 x^6+69 x^5+24 x^4+11 x^3+16 x^2+5 x+76$
- $y^2=75 x^6+49 x^5+72 x^4+33 x^3+48 x^2+15 x+70$
- and 130 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}, \sqrt{17})\). |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.aek 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.a_ek | $4$ | (not in LMFDB) |