L(s) = 1 | + 2-s − 4-s + 4·5-s − 3·8-s − 3·9-s + 4·10-s − 16-s − 3·18-s − 8·19-s − 4·20-s − 8·23-s + 2·25-s − 12·29-s + 5·32-s + 3·36-s − 8·38-s − 12·40-s + 8·43-s − 12·45-s − 8·46-s + 2·49-s + 2·50-s − 12·53-s − 12·58-s + 7·64-s + 8·67-s + 8·71-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s + 1.78·5-s − 1.06·8-s − 9-s + 1.26·10-s − 1/4·16-s − 0.707·18-s − 1.83·19-s − 0.894·20-s − 1.66·23-s + 2/5·25-s − 2.22·29-s + 0.883·32-s + 1/2·36-s − 1.29·38-s − 1.89·40-s + 1.21·43-s − 1.78·45-s − 1.17·46-s + 2/7·49-s + 0.282·50-s − 1.64·53-s − 1.57·58-s + 7/8·64-s + 0.977·67-s + 0.949·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.872689562844898968412116321231, −8.868215889831003694053677970209, −7.86052886694471390828228448204, −7.81886564473676875900189501384, −6.64458936246770473314630815851, −6.12380991478521668699719766019, −6.04868829414574942081046284670, −5.50246131433375739774113763395, −5.15238580447119340700000765704, −4.18976898855068708054002343552, −3.94486422776053801827158365621, −3.06428895368232173582353504603, −2.14503914986953664301144200995, −1.98635588682742520402514989313, 0,
1.98635588682742520402514989313, 2.14503914986953664301144200995, 3.06428895368232173582353504603, 3.94486422776053801827158365621, 4.18976898855068708054002343552, 5.15238580447119340700000765704, 5.50246131433375739774113763395, 6.04868829414574942081046284670, 6.12380991478521668699719766019, 6.64458936246770473314630815851, 7.81886564473676875900189501384, 7.86052886694471390828228448204, 8.868215889831003694053677970209, 8.872689562844898968412116321231