Properties

Label 153.c
Number of curves $4$
Conductor $153$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 153.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 153.c do not have complex multiplication.

Modular form 153.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + 2 q^{5} + 4 q^{7} - 3 q^{8} + 2 q^{10} - 2 q^{13} + 4 q^{14} - q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 153.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
153.c1 153c3 \([1, -1, 0, -816, 9179]\) \(82483294977/17\) \(12393\) \([2]\) \(32\) \(0.17267\)  
153.c2 153c2 \([1, -1, 0, -51, 152]\) \(20346417/289\) \(210681\) \([2, 2]\) \(16\) \(-0.17390\)  
153.c3 153c1 \([1, -1, 0, -6, -1]\) \(35937/17\) \(12393\) \([2]\) \(8\) \(-0.52048\) \(\Gamma_0(N)\)-optimal
153.c4 153c4 \([1, -1, 0, -6, 377]\) \(-35937/83521\) \(-60886809\) \([2]\) \(32\) \(0.17267\)