L(s) = 1 | + 4-s − 2·5-s + 4·7-s + 16-s − 4·17-s − 2·20-s + 3·25-s + 4·28-s − 8·35-s − 4·37-s − 4·41-s + 8·47-s + 9·49-s + 64-s + 16·67-s − 4·68-s + 8·79-s − 2·80-s + 16·83-s + 8·85-s + 12·89-s + 3·100-s − 4·101-s − 4·109-s + 4·112-s − 16·119-s + 10·121-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 0.894·5-s + 1.51·7-s + 1/4·16-s − 0.970·17-s − 0.447·20-s + 3/5·25-s + 0.755·28-s − 1.35·35-s − 0.657·37-s − 0.624·41-s + 1.16·47-s + 9/7·49-s + 1/8·64-s + 1.95·67-s − 0.485·68-s + 0.900·79-s − 0.223·80-s + 1.75·83-s + 0.867·85-s + 1.27·89-s + 3/10·100-s − 0.398·101-s − 0.383·109-s + 0.377·112-s − 1.46·119-s + 0.909·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.015557201\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.015557201\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.488666169660922217787232246613, −8.247959970208927584215423063391, −7.64965867242811473700883674168, −7.47612137655443434059671877263, −6.78692096022600538040428145862, −6.54221759243591394221297827494, −5.79146513302088817770129748984, −5.13633202884306868651164112443, −4.91171317203703943434316291614, −4.23588003054570288524627127566, −3.82256987971119378315316667466, −3.14550509008394024515126365733, −2.27176631580022225619805999882, −1.85640153540371798740730387983, −0.799981557337998082032325148331,
0.799981557337998082032325148331, 1.85640153540371798740730387983, 2.27176631580022225619805999882, 3.14550509008394024515126365733, 3.82256987971119378315316667466, 4.23588003054570288524627127566, 4.91171317203703943434316291614, 5.13633202884306868651164112443, 5.79146513302088817770129748984, 6.54221759243591394221297827494, 6.78692096022600538040428145862, 7.47612137655443434059671877263, 7.64965867242811473700883674168, 8.247959970208927584215423063391, 8.488666169660922217787232246613