Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x^{2} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.234283135015$, $\pm0.765716864985$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{39})\) |
Galois group: | $C_2^2$ |
Jacobians: | $224$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5028$ | $25280784$ | $128100492900$ | $646256119578624$ | $3255243549299688228$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5014$ | $357912$ | $25431454$ | $1804229352$ | $128100701878$ | $9095120158392$ | $645753437426494$ | $45848500718449032$ | $3255243547589495254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 224 curves (of which all are hyperelliptic):
- $y^2=x^6+8 x^5+26 x^4+11 x^3+45 x^2+8 x+70$
- $y^2=27 x^6+45 x^5+35 x^4+56 x^3+29 x^2+8 x+34$
- $y^2=43 x^6+10 x^5+12 x^4+53 x^3+49 x^2+55 x+17$
- $y^2=44 x^6+12 x^5+29 x^4+30 x^3+41 x^2+67 x+53$
- $y^2=24 x^6+13 x^5+61 x^4+68 x^3+3 x^2+43 x+16$
- $y^2=48 x^6+59 x^5+34 x^4+37 x^3+44 x^2+70 x+68$
- $y^2=52 x^6+58 x^5+25 x^4+46 x^3+24 x^2+64 x+50$
- $y^2=22 x^6+61 x^5+13 x^4+53 x^3+20 x^2+7 x+20$
- $y^2=53 x^6+22 x^5+48 x^4+21 x^3+29 x^2+10 x+64$
- $y^2=16 x^6+12 x^5+52 x^4+5 x^3+61 x^2+70 x+22$
- $y^2=60 x^6+64 x^5+38 x^4+48 x^3+6 x^2+22 x+6$
- $y^2=23 x^6+35 x^5+27 x^4+22 x^3+6 x^2+54 x+64$
- $y^2=19 x^6+32 x^5+47 x^4+12 x^3+42 x^2+23 x+22$
- $y^2=60 x^6+59 x^5+22 x^4+10 x^3+31 x^2+12 x+16$
- $y^2=65 x^6+58 x^5+12 x^4+70 x^3+4 x^2+13 x+41$
- $y^2=24 x^6+53 x^5+33 x^4+17 x^3+38 x^2+52 x+64$
- $y^2=30 x^6+38 x^5+28 x^4+14 x^3+11 x^2+12 x+39$
- $y^2=68 x^6+53 x^5+54 x^4+27 x^3+6 x^2+13 x+60$
- $y^2=42 x^6+60 x^5+61 x^4+18 x^3+35 x^2+22 x+4$
- $y^2=10 x^6+65 x^5+x^4+55 x^3+32 x^2+12 x+28$
- and 204 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{39})\). |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-78}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.a_o | $4$ | (not in LMFDB) |
2.71.aq_ey | $8$ | (not in LMFDB) |
2.71.q_ey | $8$ | (not in LMFDB) |