| L(s) = 1 | − 4·5-s + 4·7-s − 4·17-s + 2·25-s − 16·35-s + 4·37-s − 4·41-s + 16·47-s + 9·49-s + 16·67-s − 8·79-s + 16·83-s + 16·85-s − 4·89-s − 4·101-s − 12·109-s − 16·119-s − 2·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
| L(s) = 1 | − 1.78·5-s + 1.51·7-s − 0.970·17-s + 2/5·25-s − 2.70·35-s + 0.657·37-s − 0.624·41-s + 2.33·47-s + 9/7·49-s + 1.95·67-s − 0.900·79-s + 1.75·83-s + 1.73·85-s − 0.423·89-s − 0.398·101-s − 1.14·109-s − 1.46·119-s − 0.181·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.203952004\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.203952004\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.652820948357434282484276806827, −8.343181652928829781489871051031, −8.100097217943763203083002636744, −7.51894573143317917057996652049, −7.28938325372437501348454654873, −6.74415809186711075022587629712, −6.00138227039563501772293801869, −5.42562676548985439612990320027, −4.85774322423017668779496281819, −4.27142350548502758805729609338, −4.09260304466990936263765085576, −3.45786298677760828388428633100, −2.51285805321155705242507156881, −1.84547355334117999780445740315, −0.67340983910761567881692279224,
0.67340983910761567881692279224, 1.84547355334117999780445740315, 2.51285805321155705242507156881, 3.45786298677760828388428633100, 4.09260304466990936263765085576, 4.27142350548502758805729609338, 4.85774322423017668779496281819, 5.42562676548985439612990320027, 6.00138227039563501772293801869, 6.74415809186711075022587629712, 7.28938325372437501348454654873, 7.51894573143317917057996652049, 8.100097217943763203083002636744, 8.343181652928829781489871051031, 8.652820948357434282484276806827