| L(s) = 1 | + 3-s − 4·7-s + 9-s − 8·17-s − 4·21-s − 6·25-s + 27-s − 4·37-s − 8·41-s + 9·49-s − 8·51-s − 8·59-s − 4·63-s + 16·67-s − 6·75-s − 8·79-s + 81-s + 8·83-s − 24·89-s − 16·101-s + 12·109-s − 4·111-s + 32·119-s + 2·121-s − 8·123-s + 127-s + 131-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 1.51·7-s + 1/3·9-s − 1.94·17-s − 0.872·21-s − 6/5·25-s + 0.192·27-s − 0.657·37-s − 1.24·41-s + 9/7·49-s − 1.12·51-s − 1.04·59-s − 0.503·63-s + 1.95·67-s − 0.692·75-s − 0.900·79-s + 1/9·81-s + 0.878·83-s − 2.54·89-s − 1.59·101-s + 1.14·109-s − 0.379·111-s + 2.93·119-s + 2/11·121-s − 0.721·123-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84672 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84672 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.599876921050449715693012105168, −8.962827877128938733443338280943, −8.527346408624314011571057188420, −8.090514919080159649094443071908, −7.29780808550045439764648383061, −6.84455019659191407667988543997, −6.52609009332375884121270381052, −5.93365554456607431560037312657, −5.24720386863760161640819538331, −4.43439341990892411245348529652, −3.90361914414778626691142442272, −3.29848666061953735636387585401, −2.59552920704093375581584943398, −1.84998880734961742604860171416, 0,
1.84998880734961742604860171416, 2.59552920704093375581584943398, 3.29848666061953735636387585401, 3.90361914414778626691142442272, 4.43439341990892411245348529652, 5.24720386863760161640819538331, 5.93365554456607431560037312657, 6.52609009332375884121270381052, 6.84455019659191407667988543997, 7.29780808550045439764648383061, 8.090514919080159649094443071908, 8.527346408624314011571057188420, 8.962827877128938733443338280943, 9.599876921050449715693012105168