Properties

Label 2.41.i_dq
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $( 1 + 2 x + 41 x^{2} )( 1 + 6 x + 41 x^{2} )$
  $1 + 8 x + 94 x^{2} + 328 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.549915982954$, $\pm0.655213070720$
Angle rank:  $2$ (numerical)
Jacobians:  $100$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2112$ $3041280$ $4697985600$ $7980756664320$ $13426034413019712$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $50$ $1806$ $68162$ $2824286$ $115885330$ $4750050798$ $194753725090$ $7984927570366$ $327381935815922$ $13422659348542926$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 100 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41}$.

Endomorphism algebra over $\F_{41}$
The isogeny class factors as 1.41.c $\times$ 1.41.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.ai_dq$2$(not in LMFDB)
2.41.ae_cs$2$(not in LMFDB)
2.41.e_cs$2$(not in LMFDB)