# Stored data for abelian variety isogeny class 2.41.i_dq, downloaded from the LMFDB on 09 February 2026. {"abvar_count": 2112, "abvar_counts": [2112, 3041280, 4697985600, 7980756664320, 13426034413019712, 22563236434362624000, 37929120315531478980672, 63759049609320102250414080, 107178931433055228842312078400, 180167783471723880761683214592000], "abvar_counts_str": "2112 3041280 4697985600 7980756664320 13426034413019712 22563236434362624000 37929120315531478980672 63759049609320102250414080 107178931433055228842312078400 180167783471723880761683214592000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.549915982953809, 0.655213070720013], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 50, "curve_counts": [50, 1806, 68162, 2824286, 115885330, 4750050798, 194753725090, 7984927570366, 327381935815922, 13422659348542926], "curve_counts_str": "50 1806 68162 2824286 115885330 4750050798 194753725090 7984927570366 327381935815922 13422659348542926 ", "curves": ["y^2=32*x^6+18*x^5+20*x^4+x^3+20*x^2+18*x+32", "y^2=33*x^6+27*x^5+28*x^4+33*x^3+28*x^2+27*x+33", "y^2=21*x^6+8*x^5+40*x^4+26*x^3+23*x^2+9*x+5", "y^2=35*x^6+23*x^5+17*x^4+29*x^3+38*x^2+3*x+27", "y^2=40*x^6+6*x^5+34*x^4+2*x^3+34*x^2+6*x+40", "y^2=17*x^6+35*x^5+8*x^4+24*x^3+8*x^2+35*x+17", "y^2=32*x^6+18*x^5+30*x^4+15*x^3+30*x^2+18*x+32", "y^2=34*x^6+11*x^5+37*x^4+21*x^3+23*x^2+28*x+13", "y^2=14*x^6+35*x^5+22*x^3+33*x^2+36*x+28", "y^2=3*x^6+30*x^5+39*x^4+22*x^3+39*x^2+30*x+3", "y^2=20*x^6+25*x^5+25*x^4+3*x^3+22*x^2+18*x+12", "y^2=12*x^6+33*x^5+17*x^4+21*x^3+31*x^2+32*x+39", "y^2=x^6+7*x^5+28*x^4+34*x^3+28*x^2+31*x+27", "y^2=11*x^5+37*x^4+13*x^3+37*x^2+11*x", "y^2=13*x^6+11*x^4+2*x^2+14*x+39", "y^2=34*x^5+31*x^4+15*x^3+31*x^2+34*x", "y^2=6*x^6+33*x^5+17*x^4+30*x^3+17*x^2+33*x+6", "y^2=14*x^6+x^4+14*x^3+40*x^2+34*x+38", "y^2=17*x^6+3*x^5+17*x^4+22*x^3+17*x^2+3*x+17", "y^2=x^6+20*x^5+17*x^4+35*x^3+17*x^2+20*x+1", "y^2=8*x^6+33*x^5+12*x^4+22*x^3+12*x^2+33*x+8", "y^2=30*x^6+8*x^5+29*x^4+13*x^3+15*x^2+13*x+36", "y^2=5*x^6+3*x^5+28*x^4+30*x^3+13*x^2+32*x+40", "y^2=37*x^6+22*x^5+34*x^4+3*x^3+34*x^2+22*x+37", "y^2=18*x^6+7*x^5+9*x^4+13*x^3+9*x^2+7*x+18", "y^2=22*x^5+30*x^4+27*x^3+30*x^2+22*x", "y^2=x^6+15*x^5+25*x^4+15*x^3+36*x^2+9*x+2", "y^2=35*x^6+27*x^5+x^4+33*x^3+x^2+27*x+35", "y^2=14*x^6+3*x^5+36*x^4+11*x^3+36*x^2+3*x+14", "y^2=3*x^6+8*x^5+16*x^4+13*x^3+16*x^2+8*x+3", "y^2=17*x^6+39*x^5+27*x^4+33*x^3+18*x^2+26*x+34", "y^2=21*x^6+28*x^5+16*x^4+5*x^3+8*x^2+7*x+18", "y^2=34*x^6+36*x^5+40*x^4+6*x^3+40*x^2+36*x+34", "y^2=11*x^6+37*x^5+15*x^4+5*x^3+6*x^2+x+3", "y^2=x^6+7*x^5+37*x^4+26*x^3+8*x^2+23*x+20", "y^2=33*x^6+15*x^5+4*x^4+7*x^3+4*x^2+15*x+33", "y^2=13*x^6+11*x^5+15*x^4+28*x^3+33*x^2+6*x+27", "y^2=32*x^6+6*x^5+35*x^4+28*x^3+13*x^2+35*x+1", "y^2=5*x^5+29*x^4+17*x^3+35*x^2+32*x", "y^2=40*x^6+20*x^4+22*x^3+20*x^2+40", "y^2=11*x^6+32*x^5+27*x^4+12*x^3+17*x^2+25*x+31", "y^2=25*x^6+18*x^5+14*x^4+11*x^3+5*x^2+16*x+17", "y^2=17*x^6+36*x^5+2*x^4+27*x^3+2*x^2+36*x+17", "y^2=17*x^6+36*x^5+17*x^4+3*x^3+35*x^2+15*x+9", "y^2=2*x^6+40*x^5+6*x^4+34*x^3+6*x^2+40*x+2", "y^2=31*x^6+23*x^5+2*x^4+x^3+2*x^2+23*x+31", "y^2=13*x^6+7*x^5+36*x^4+6*x^3+23*x^2+12*x+24", "y^2=18*x^6+25*x^5+4*x^4+15*x^3+25*x^2+31*x+37", "y^2=x^6+40*x^5+29*x^4+24*x^3+2*x^2+9*x+33", "y^2=34*x^6+34*x^5+40*x^4+39*x^3+36*x^2+30*x+27", "y^2=31*x^6+29*x^5+22*x^4+33*x^3+22*x^2+29*x+31", "y^2=6*x^6+31*x^5+21*x^4+11*x^3+21*x^2+31*x+6", "y^2=3*x^6+39*x^5+4*x^4+20*x^3+8*x^2+16*x+13", "y^2=x^6+15*x^5+20*x^4+2*x^3+10*x^2+7*x+29", "y^2=4*x^6+27*x^5+26*x^4+12*x^3+15*x^2+27*x+37", "y^2=20*x^6+5*x^5+25*x^4+12*x^3+30*x^2+36*x+6", "y^2=24*x^6+40*x^5+2*x^4+3*x^3+2*x^2+40*x+24", "y^2=13*x^6+31*x^5+6*x^4+20*x^3+4*x^2+29*x+29", "y^2=2*x^6+14*x^5+14*x^4+14*x^3+22*x^2+20*x+16", "y^2=15*x^6+3*x^5+36*x^4+9*x^3+36*x^2+3*x+15", "y^2=13*x^6+38*x^5+23*x^3+30*x+17", "y^2=5*x^6+24*x^5+25*x^4+6*x^3+18*x^2+15*x+33", "y^2=31*x^6+x^5+29*x^4+6*x^3+29*x^2+x+31", "y^2=33*x^6+38*x^5+18*x^4+21*x^3+11*x^2+40*x+11", "y^2=20*x^6+38*x^5+10*x^4+36*x^3+9*x^2+7*x+40", "y^2=12*x^6+19*x^5+7*x^4+23*x^3+35*x^2+24*x+24", "y^2=2*x^6+25*x^5+29*x^4+40*x^3+29*x^2+25*x+2", "y^2=39*x^6+24*x^5+27*x^4+11*x^3+27*x^2+24*x+39", "y^2=20*x^6+9*x^5+9*x^4+34*x^3+22*x^2+22*x+15", "y^2=40*x^6+22*x^5+12*x^4+28*x^3+12*x^2+22*x+40", "y^2=18*x^6+24*x^5+26*x^4+31*x^3+x^2+21*x", "y^2=4*x^6+18*x^5+10*x^4+27*x^3+10*x^2+18*x+4", "y^2=20*x^6+38*x^5+30*x^4+40*x^3+29*x^2+11*x+2", "y^2=23*x^6+36*x^5+19*x^4+14*x^3+19*x^2+36*x+23", "y^2=28*x^6+18*x^5+9*x^4+20*x^3+9*x^2+18*x+28", "y^2=36*x^6+2*x^5+19*x^4+39*x^3+11*x^2+21*x+16", "y^2=39*x^6+37*x^5+9*x^4+21*x^3+9*x^2+37*x+39", "y^2=31*x^6+25*x^5+38*x^4+14*x^3+19*x^2+37*x+9", "y^2=21*x^6+22*x^5+3*x^4+4*x^3+22*x^2+26*x+18", "y^2=10*x^6+4*x^5+13*x^4+10*x^3+15*x^2+16*x+2", "y^2=19*x^6+27*x^5+37*x^4+3*x^3+x^2+35*x+17", "y^2=14*x^6+10*x^5+x^4+19*x^3+x^2+10*x+14", "y^2=33*x^6+33*x^5+31*x^4+20*x^3+5*x^2+39*x+1", "y^2=21*x^6+18*x^5+3*x^3+10*x+36", "y^2=30*x^6+32*x^5+5*x^4+35*x^3+12*x^2+20*x+16", "y^2=2*x^6+36*x^5+32*x^4+17*x^3+32*x^2+36*x+2", "y^2=19*x^6+26*x^5+26*x^4+36*x^3+7*x^2+35*x+38", "y^2=30*x^6+4*x^5+28*x^4+12*x^3+9*x^2+38*x+39", "y^2=36*x^6+6*x^5+10*x^4+19*x^3+11*x^2+39*x+15", "y^2=12*x^6+24*x^5+28*x^4+14*x^3+7*x^2+22*x+13", "y^2=32*x^6+4*x^5+6*x^4+26*x^3+6*x^2+4*x+32", "y^2=6*x^6+9*x^5+4*x^4+24*x^3+4*x^2+9*x+6", "y^2=4*x^6+11*x^5+18*x^4+22*x^3+22*x^2+10*x+35", "y^2=23*x^6+31*x^5+39*x^4+11*x^3+7*x^2+34*x+12", "y^2=29*x^6+9*x^5+35*x^4+33*x^3+35*x^2+9*x+29", "y^2=35*x^6+5*x^5+2*x^4+23*x^3+9*x^2+9*x+17", "y^2=20*x^6+6*x^5+27*x^4+39*x^3+27*x^2+6*x+20", "y^2=13*x^6+10*x^5+20*x^4+32*x^3+23*x^2+21*x+9", "y^2=35*x^6+2*x^5+5*x^4+3*x^3+34*x^2+36*x+3", "y^2=32*x^6+13*x^5+25*x^4+34*x^3+4*x^2+29*x+20"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 21, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.40.1", "2.0.8.1"], "geometric_splitting_field": "4.0.1600.1", "geometric_splitting_polynomials": [[4, 0, 6, 0, 1]], "group_structure_count": 9, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 100, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 100, "label": "2.41.i_dq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["2.0.40.1", "2.0.8.1"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 8, 94, 328, 1681], "poly_str": "1 8 94 328 1681 ", "primitive_models": [], "q": 41, "real_poly": [1, 8, 12], "simple_distinct": ["1.41.c", "1.41.g"], "simple_factors": ["1.41.cA", "1.41.gA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F^2+F+30"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1600.1", "splitting_polynomials": [[4, 0, 6, 0, 1]], "twist_count": 4, "twists": [["2.41.ai_dq", "2.1681.eu_khi", 2], ["2.41.ae_cs", "2.1681.eu_khi", 2], ["2.41.e_cs", "2.1681.eu_khi", 2]], "weak_equivalence_count": 36, "zfv_index": 128, "zfv_index_factorization": [[2, 7]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 20480, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F^2+F+30"]}