| L(s) = 1 | + 2-s − 4-s − 3·8-s + 4·13-s − 16-s − 6·17-s − 8·19-s − 25-s + 4·26-s + 5·32-s − 6·34-s − 8·38-s − 22·43-s + 2·47-s + 8·49-s − 50-s − 4·52-s − 8·53-s − 8·59-s + 7·64-s + 14·67-s + 6·68-s + 8·76-s − 9·81-s − 2·83-s − 22·86-s + 2·94-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s + 1.10·13-s − 1/4·16-s − 1.45·17-s − 1.83·19-s − 1/5·25-s + 0.784·26-s + 0.883·32-s − 1.02·34-s − 1.29·38-s − 3.35·43-s + 0.291·47-s + 8/7·49-s − 0.141·50-s − 0.554·52-s − 1.09·53-s − 1.04·59-s + 7/8·64-s + 1.71·67-s + 0.727·68-s + 0.917·76-s − 81-s − 0.219·83-s − 2.37·86-s + 0.206·94-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.136503748669288671350125199405, −8.670662191513768568756438002112, −8.335924935947455064066194787716, −8.025461497321618315518428203691, −6.84690166468947991685472434175, −6.70555673220239224394984954620, −6.15576634029471464930388930372, −5.64583776038304322414395614853, −4.91633121139425357435822763962, −4.47346975187280301993519899494, −3.94730448018956220296682974365, −3.42017911670120886570600770541, −2.55553166155643940516752807561, −1.69208974574332137498775334130, 0,
1.69208974574332137498775334130, 2.55553166155643940516752807561, 3.42017911670120886570600770541, 3.94730448018956220296682974365, 4.47346975187280301993519899494, 4.91633121139425357435822763962, 5.64583776038304322414395614853, 6.15576634029471464930388930372, 6.70555673220239224394984954620, 6.84690166468947991685472434175, 8.025461497321618315518428203691, 8.335924935947455064066194787716, 8.670662191513768568756438002112, 9.136503748669288671350125199405