Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 72 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.334630599408$, $\pm0.665369400592$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{70}, \sqrt{-214})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $60$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5114$ | $26152996$ | $128099568314$ | $646002538896400$ | $3255243552685288154$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $5186$ | $357912$ | $25421478$ | $1804229352$ | $128098852706$ | $9095120158392$ | $645753584911678$ | $45848500718449032$ | $3255243554360695106$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=12 x^6+51 x^5+21 x^4+x^3+29 x^2+34 x+52$
- $y^2=13 x^6+2 x^5+5 x^4+7 x^3+61 x^2+25 x+9$
- $y^2=59 x^6+69 x^5+3 x^4+51 x^3+33 x^2+35 x+3$
- $y^2=58 x^6+57 x^5+21 x^4+2 x^3+18 x^2+32 x+21$
- $y^2=53 x^6+24 x^5+27 x^4+49 x^3+20 x^2+14 x+40$
- $y^2=16 x^6+26 x^5+47 x^4+59 x^3+69 x^2+27 x+67$
- $y^2=56 x^6+55 x^5+2 x^4+56 x^3+3 x^2+37 x+57$
- $y^2=37 x^6+30 x^5+14 x^4+37 x^3+21 x^2+46 x+44$
- $y^2=17 x^6+12 x^5+34 x^4+6 x^3+29 x^2+48 x+13$
- $y^2=48 x^6+13 x^5+25 x^4+42 x^3+61 x^2+52 x+20$
- $y^2=5 x^6+63 x^5+32 x^4+29 x^3+64 x^2+27 x+36$
- $y^2=35 x^6+15 x^5+11 x^4+61 x^3+22 x^2+47 x+39$
- $y^2=20 x^6+7 x^5+23 x^4+52 x^3+9 x^2+16 x+12$
- $y^2=69 x^6+49 x^5+19 x^4+9 x^3+63 x^2+41 x+13$
- $y^2=68 x^6+13 x^5+2 x^4+41 x^3+64 x^2+17 x+4$
- $y^2=50 x^6+20 x^5+14 x^4+3 x^3+22 x^2+48 x+28$
- $y^2=28 x^6+16 x^5+17 x^4+15 x^3+56 x^2+9 x+7$
- $y^2=54 x^6+41 x^5+48 x^4+34 x^3+37 x^2+63 x+49$
- $y^2=63 x^6+70 x^5+9 x^4+48 x^3+70 x^2+2 x+68$
- $y^2=15 x^6+64 x^5+63 x^4+52 x^3+64 x^2+14 x+50$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{70}, \sqrt{-214})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.cu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3745}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.a_acu | $4$ | (not in LMFDB) |