Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 58 x^{2} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.375047339367$, $\pm0.624952660633$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{6}, \sqrt{-35})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $164$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1740$ | $3027600$ | $4750006860$ | $7984919577600$ | $13422659146063500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $1798$ | $68922$ | $2825758$ | $115856202$ | $4749909478$ | $194754273882$ | $7984936532158$ | $327381934393962$ | $13422658981974598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 164 curves (of which all are hyperelliptic):
- $y^2=10 x^6+19 x^4+12 x^3+33 x^2+38$
- $y^2=12 x^6+15 x^5+8 x^4+7 x^3+26 x^2+38 x+25$
- $y^2=25 x^6+26 x^5+17 x^4+17 x^3+39 x^2+33 x+37$
- $y^2=27 x^6+33 x^5+20 x^4+20 x^3+29 x^2+34 x+17$
- $y^2=36 x^6+22 x^5+25 x^4+16 x^3+27 x^2+8 x+19$
- $y^2=11 x^6+9 x^5+27 x^4+14 x^3+39 x^2+7 x+32$
- $y^2=17 x^6+7 x^5+28 x^4+24 x^3+19 x^2+5 x+29$
- $y^2=20 x^6+x^5+4 x^4+21 x^3+32 x^2+30 x+10$
- $y^2=5 x^6+4 x^5+31 x^4+30 x^2+26 x+36$
- $y^2=30 x^6+24 x^5+22 x^4+16 x^2+33 x+11$
- $y^2=23 x^6+x^5+3 x^4+2 x^3+26 x^2+20 x+20$
- $y^2=15 x^6+6 x^5+18 x^4+12 x^3+33 x^2+38 x+38$
- $y^2=6 x^6+24 x^5+5 x^4+16 x^3+14 x^2+20 x+11$
- $y^2=36 x^6+21 x^5+30 x^4+14 x^3+2 x^2+38 x+25$
- $y^2=9 x^6+4 x^5+10 x^4+35 x^3+9 x^2+15 x+17$
- $y^2=13 x^6+24 x^5+19 x^4+5 x^3+13 x^2+8 x+20$
- $y^2=16 x^6+34 x^5+5 x^4+32 x^3+14 x^2+8 x+26$
- $y^2=14 x^6+40 x^5+30 x^4+28 x^3+2 x^2+7 x+33$
- $y^2=27 x^6+19 x^5+4 x^4+28 x^3+36 x+9$
- $y^2=39 x^6+32 x^5+24 x^4+4 x^3+11 x+13$
- and 144 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-35})\). |
| The base change of $A$ to $\F_{41^{2}}$ is 1.1681.cg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-210}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.a_acg | $4$ | (not in LMFDB) |