Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 30 x^{2} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.217062313474$, $\pm0.782937686526$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{11}, \sqrt{-29})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $440$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5300$ | $28090000$ | $151334678900$ | $807014464000000$ | $4297625826138936500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $5270$ | $389018$ | $28417758$ | $2073071594$ | $151335131510$ | $11047398519098$ | $806460015049918$ | $58871586708267914$ | $4297625822574315350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 440 curves (of which all are hyperelliptic):
- $y^2=7 x^6+4 x^5+56 x^4+33 x^3+37 x^2+63 x+33$
- $y^2=35 x^6+20 x^5+61 x^4+19 x^3+39 x^2+23 x+19$
- $y^2=22 x^6+30 x^5+24 x^4+51 x^3+5 x^2+31 x+41$
- $y^2=37 x^6+4 x^5+47 x^4+36 x^3+25 x^2+9 x+59$
- $y^2=38 x^6+67 x^5+20 x^4+46 x^3+48 x^2+23 x+16$
- $y^2=44 x^6+43 x^5+27 x^4+11 x^3+21 x^2+42 x+7$
- $y^2=38 x^6+25 x^5+23 x^4+38 x^3+38 x^2+49 x+8$
- $y^2=44 x^6+52 x^5+42 x^4+44 x^3+44 x^2+26 x+40$
- $y^2=30 x^6+70 x^5+28 x^4+44 x^3+52 x^2+38 x+72$
- $y^2=71 x^6+6 x^5+2 x^4+27 x^3+25 x^2+9 x+45$
- $y^2=61 x^6+8 x^5+6 x^4+46 x^3+28 x^2+12 x+62$
- $y^2=33 x^6+25 x^5+56 x^4+23 x^3+33 x^2+60 x+15$
- $y^2=19 x^6+52 x^5+61 x^4+42 x^3+19 x^2+8 x+2$
- $y^2=52 x^6+14 x^5+66 x^4+10 x^3+65 x^2+60 x+64$
- $y^2=54 x^6+7 x^5+x^4+70 x^3+68 x^2+30 x+5$
- $y^2=51 x^6+35 x^5+5 x^4+58 x^3+48 x^2+4 x+25$
- $y^2=15 x^6+19 x^5+15 x^4+15 x^3+67 x^2+41 x+37$
- $y^2=42 x^6+39 x^5+14 x^4+17 x^3+62 x^2+47 x+57$
- $y^2=64 x^6+49 x^5+70 x^4+12 x^3+18 x^2+16 x+66$
- $y^2=68 x^6+65 x^5+61 x^4+6 x^3+11 x^2+4 x+13$
- and 420 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{11}, \sqrt{-29})\). |
| The base change of $A$ to $\F_{73^{2}}$ is 1.5329.abe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-319}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.a_be | $4$ | (not in LMFDB) |