Properties

Label 2.73.a_abe
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 - 30 x^{2} + 5329 x^{4}$
Frobenius angles:  $\pm0.217062313474$, $\pm0.782937686526$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{11}, \sqrt{-29})\)
Galois group:  $C_2^2$
Jacobians:  $440$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5300$ $28090000$ $151334678900$ $807014464000000$ $4297625826138936500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $74$ $5270$ $389018$ $28417758$ $2073071594$ $151335131510$ $11047398519098$ $806460015049918$ $58871586708267914$ $4297625822574315350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 440 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73^{2}}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{11}, \sqrt{-29})\).
Endomorphism algebra over $\overline{\F}_{73}$
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.abe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-319}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.a_be$4$(not in LMFDB)