Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 120 x^{2} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.112723385156$, $\pm0.887276614844$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-38}, \sqrt{278})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $50$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6122$ | $37478884$ | $243087974282$ | $1516959478970896$ | $9468276088295838602$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6002$ | $493040$ | $38946246$ | $3077056400$ | $243088493042$ | $19203908986160$ | $1517108958349438$ | $119851595982618320$ | $9468276093964830002$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=36 x^6+42 x^5+x^4+7 x^3+29 x^2+70 x+52$
- $y^2=29 x^6+47 x^5+3 x^4+21 x^3+8 x^2+52 x+77$
- $y^2=8 x^6+43 x^5+16 x^4+20 x^3+6 x^2+19 x+6$
- $y^2=24 x^6+50 x^5+48 x^4+60 x^3+18 x^2+57 x+18$
- $y^2=78 x^6+25 x^5+17 x^4+26 x^3+57 x^2+41 x$
- $y^2=76 x^6+75 x^5+51 x^4+78 x^3+13 x^2+44 x$
- $y^2=77 x^6+8 x^5+64 x^4+28 x^3+71 x^2+17 x+67$
- $y^2=73 x^6+24 x^5+34 x^4+5 x^3+55 x^2+51 x+43$
- $y^2=71 x^6+45 x^5+73 x^4+12 x^3+4 x^2+36 x+30$
- $y^2=55 x^6+56 x^5+61 x^4+36 x^3+12 x^2+29 x+11$
- $y^2=4 x^6+62 x^5+40 x^4+42 x^3+37 x^2+51 x+40$
- $y^2=12 x^6+28 x^5+41 x^4+47 x^3+32 x^2+74 x+41$
- $y^2=69 x^6+78 x^5+76 x^4+47 x^3+8 x^2+46 x+76$
- $y^2=49 x^6+76 x^5+70 x^4+62 x^3+24 x^2+59 x+70$
- $y^2=25 x^6+34 x^5+65 x^4+60 x^3+67 x^2+3 x+26$
- $y^2=75 x^6+23 x^5+37 x^4+22 x^3+43 x^2+9 x+78$
- $y^2=69 x^6+76 x^5+38 x^4+51 x^3+48 x^2+51 x+64$
- $y^2=49 x^6+70 x^5+35 x^4+74 x^3+65 x^2+74 x+34$
- $y^2=48 x^6+18 x^5+52 x^4+42 x^3+11 x^2+23 x+73$
- $y^2=65 x^6+54 x^5+77 x^4+47 x^3+33 x^2+69 x+61$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-38}, \sqrt{278})\). |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.aeq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2641}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.a_eq | $4$ | (not in LMFDB) |