Properties

Label 2.37.a_g
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 + 6 x^{2} + 1369 x^{4}$
Frobenius angles:  $\pm0.262918636125$, $\pm0.737081363875$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-5}, \sqrt{17})\)
Galois group:  $C_2^2$
Jacobians:  $142$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1376$ $1893376$ $2565701984$ $3522618474496$ $4808584427171936$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $38$ $1382$ $50654$ $1879566$ $69343958$ $2565677558$ $94931877134$ $3512472348958$ $129961739795078$ $4808584481926022$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 142 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37^{2}}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}, \sqrt{17})\).
Endomorphism algebra over $\overline{\F}_{37}$
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-85}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.a_ag$4$(not in LMFDB)