Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6 x^{2} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.262918636125$, $\pm0.737081363875$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-5}, \sqrt{17})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $142$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1376$ | $1893376$ | $2565701984$ | $3522618474496$ | $4808584427171936$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1382$ | $50654$ | $1879566$ | $69343958$ | $2565677558$ | $94931877134$ | $3512472348958$ | $129961739795078$ | $4808584481926022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 142 curves (of which all are hyperelliptic):
- $y^2=22 x^6+30 x^5+9 x^4+35 x^3+4 x^2+32 x+7$
- $y^2=25 x^6+34 x^5+10 x^4+29 x^3+31 x^2+33 x+8$
- $y^2=13 x^6+31 x^5+20 x^4+21 x^3+25 x^2+29 x+16$
- $y^2=14 x^6+6 x^5+8 x^4+27 x^3+20 x^2+28 x+23$
- $y^2=28 x^6+12 x^5+16 x^4+17 x^3+3 x^2+19 x+9$
- $y^2=9 x^6+29 x^5+17 x^4+11 x^3+34 x^2+x+8$
- $y^2=5 x^6+15 x^5+29 x^3+16 x^2+31$
- $y^2=10 x^6+30 x^5+21 x^3+32 x^2+25$
- $y^2=8 x^6+14 x^5+18 x^4+30 x^3+36 x^2+14 x+31$
- $y^2=16 x^6+28 x^5+36 x^4+23 x^3+35 x^2+28 x+25$
- $y^2=9 x^6+35 x^5+18 x^4+34 x^3+28 x^2+18 x+22$
- $y^2=12 x^6+34 x^5+18 x^4+13 x^3+32 x^2+7 x+17$
- $y^2=18 x^6+15 x^5+15 x^4+2 x^3+21 x^2+28 x+33$
- $y^2=36 x^6+30 x^5+30 x^4+4 x^3+5 x^2+19 x+29$
- $y^2=31 x^5+16 x^4+20 x^3+31 x^2+3 x+36$
- $y^2=25 x^5+32 x^4+3 x^3+25 x^2+6 x+35$
- $y^2=18 x^6+3 x^5+9 x^4+32 x^3+8 x^2+24 x+26$
- $y^2=36 x^6+6 x^5+18 x^4+27 x^3+16 x^2+11 x+15$
- $y^2=24 x^6+10 x^5+28 x^4+26 x^3+22 x^2+3 x+5$
- $y^2=12 x^5+17 x^4+2 x^3+25 x+18$
- and 122 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}, \sqrt{17})\). |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-85}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.37.a_ag | $4$ | (not in LMFDB) |