| L(s) = 1 | − 2-s + 4-s − 8-s + 3·11-s − 8·13-s + 16-s + 11·17-s − 5·19-s − 3·22-s − 4·25-s + 8·26-s − 4·31-s − 32-s − 11·34-s − 37-s + 5·38-s − 12·43-s + 3·44-s + 10·49-s + 4·50-s − 8·52-s + 12·53-s + 4·62-s + 64-s + 11·68-s − 9·71-s + 13·73-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.904·11-s − 2.21·13-s + 1/4·16-s + 2.66·17-s − 1.14·19-s − 0.639·22-s − 4/5·25-s + 1.56·26-s − 0.718·31-s − 0.176·32-s − 1.88·34-s − 0.164·37-s + 0.811·38-s − 1.82·43-s + 0.452·44-s + 10/7·49-s + 0.565·50-s − 1.10·52-s + 1.64·53-s + 0.508·62-s + 1/8·64-s + 1.33·68-s − 1.06·71-s + 1.52·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 508288 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 508288 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.190038446096234349329366492475, −7.87412899814022232815841220470, −7.29014413863468359330027317203, −7.17489714958834808563278964453, −6.61940574229480652017425138757, −5.94593937426796753768898862994, −5.46004485317344201667036216616, −5.20978336178999411113432460774, −4.35804599916004841764213471880, −3.88840585869286160042509916466, −3.24413323473804413844418683625, −2.61014540491342048494986988146, −1.95357836156256135390786536043, −1.20614804964089655967947503783, 0,
1.20614804964089655967947503783, 1.95357836156256135390786536043, 2.61014540491342048494986988146, 3.24413323473804413844418683625, 3.88840585869286160042509916466, 4.35804599916004841764213471880, 5.20978336178999411113432460774, 5.46004485317344201667036216616, 5.94593937426796753768898862994, 6.61940574229480652017425138757, 7.17489714958834808563278964453, 7.29014413863468359330027317203, 7.87412899814022232815841220470, 8.190038446096234349329366492475