Properties

Label 2.43.m_dt
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 + x + 43 x^{2} )( 1 + 11 x + 43 x^{2} )$
  $1 + 12 x + 97 x^{2} + 516 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.524294481342$, $\pm0.816708498756$
Angle rank:  $2$ (numerical)
Jacobians:  $110$
Cyclic group of points:    no
Non-cyclic primes:   $3, 5$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2475$ $3512025$ $6304359600$ $11684594975625$ $21609367238311875$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $1900$ $79292$ $3417748$ $146994056$ $6321656950$ $271817423192$ $11688195397348$ $502592660678756$ $21611482271309500$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 110 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.b $\times$ 1.43.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.am_dt$2$(not in LMFDB)
2.43.ak_cx$2$(not in LMFDB)
2.43.k_cx$2$(not in LMFDB)