Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 83 x^{2} )( 1 + 16 x + 83 x^{2} )$ |
$1 + 12 x + 102 x^{2} + 996 x^{3} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.429548098763$, $\pm0.841198311973$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $410$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8000$ | $47872000$ | $327538568000$ | $2252147814400000$ | $15515204601360200000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $96$ | $6950$ | $572832$ | $47455278$ | $3938828256$ | $326941779350$ | $27136051621152$ | $2252292313659358$ | $186940254287666016$ | $15516041180334479750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 410 curves (of which all are hyperelliptic):
- $y^2=66 x^6+18 x^5+42 x^4+38 x^3+58 x^2+66 x+49$
- $y^2=38 x^6+34 x^5+x^4+14 x^3+30 x^2+30 x+17$
- $y^2=67 x^6+33 x^5+18 x^4+19 x^3+63 x^2+82 x+77$
- $y^2=34 x^6+4 x^5+18 x^4+21 x^3+45 x^2+39 x+54$
- $y^2=61 x^6+67 x^5+14 x^4+42 x^3+48 x^2+30 x+38$
- $y^2=47 x^6+60 x^5+67 x^4+57 x^3+72 x^2+12 x+63$
- $y^2=66 x^6+6 x^5+51 x^4+73 x^3+51 x^2+6 x+66$
- $y^2=48 x^6+23 x^5+74 x^4+26 x^3+67 x^2+14 x+34$
- $y^2=63 x^6+63 x^5+49 x^3+76 x^2+53 x+17$
- $y^2=78 x^6+82 x^5+36 x^4+54 x^3+17 x^2+27 x+12$
- $y^2=69 x^6+33 x^5+80 x^4+74 x^3+8 x^2+73 x+12$
- $y^2=78 x^6+41 x^5+20 x^4+56 x^3+29 x^2+75 x+82$
- $y^2=81 x^6+65 x^5+70 x^4+38 x^3+70 x^2+65 x+81$
- $y^2=16 x^6+56 x^4+29 x^3+82 x^2+29$
- $y^2=60 x^6+34 x^5+24 x^4+59 x^3+24 x^2+42 x+60$
- $y^2=65 x^6+55 x^5+50 x^4+18 x^3+46 x^2+23 x+21$
- $y^2=14 x^6+61 x^5+60 x^4+27 x^3+74 x^2+30 x+10$
- $y^2=61 x^6+18 x^5+64 x^4+73 x^3+64 x^2+52 x+55$
- $y^2=64 x^6+41 x^5+10 x^4+5 x^3+6 x^2+21 x+35$
- $y^2=69 x^6+68 x^5+2 x^4+66 x^3+50 x^2+5 x+78$
- and 390 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.ae $\times$ 1.83.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.au_iw | $2$ | (not in LMFDB) |
2.83.am_dy | $2$ | (not in LMFDB) |
2.83.u_iw | $2$ | (not in LMFDB) |