L(s) = 1 | + 2-s − 4-s − 3·8-s + 2·11-s − 4·13-s − 16-s + 2·22-s − 8·23-s + 6·25-s − 4·26-s + 5·32-s − 12·37-s − 2·44-s − 8·46-s + 16·47-s − 10·49-s + 6·50-s + 4·52-s − 8·59-s − 12·61-s + 7·64-s − 4·73-s − 12·74-s − 24·83-s − 6·88-s + 8·92-s + 16·94-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s + 0.603·11-s − 1.10·13-s − 1/4·16-s + 0.426·22-s − 1.66·23-s + 6/5·25-s − 0.784·26-s + 0.883·32-s − 1.97·37-s − 0.301·44-s − 1.17·46-s + 2.33·47-s − 1.42·49-s + 0.848·50-s + 0.554·52-s − 1.04·59-s − 1.53·61-s + 7/8·64-s − 0.468·73-s − 1.39·74-s − 2.63·83-s − 0.639·88-s + 0.834·92-s + 1.65·94-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156816 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.847930541996233473124247216175, −8.765403563089383948261377682178, −8.057124954523707004822208987593, −7.53251376909507826007962870225, −6.96045911731745643617967557305, −6.52495869918911105195591443455, −5.82642873508535905813523337142, −5.52630761902370115381086518039, −4.77930282088861382836755069859, −4.44676656528528856043784213256, −3.85624161784864461163790617342, −3.18953257582755724401307416707, −2.56141659749378916924669768053, −1.55587956177828296160422082958, 0,
1.55587956177828296160422082958, 2.56141659749378916924669768053, 3.18953257582755724401307416707, 3.85624161784864461163790617342, 4.44676656528528856043784213256, 4.77930282088861382836755069859, 5.52630761902370115381086518039, 5.82642873508535905813523337142, 6.52495869918911105195591443455, 6.96045911731745643617967557305, 7.53251376909507826007962870225, 8.057124954523707004822208987593, 8.765403563089383948261377682178, 8.847930541996233473124247216175