L(s) = 1 | − 7-s + 6·11-s + 2·23-s + 6·25-s − 4·29-s + 4·37-s − 12·43-s + 49-s − 8·53-s + 24·67-s − 10·71-s − 6·77-s − 10·107-s + 4·109-s − 12·113-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 2·161-s + 163-s + 167-s + 18·169-s + ⋯ |
L(s) = 1 | − 0.377·7-s + 1.80·11-s + 0.417·23-s + 6/5·25-s − 0.742·29-s + 0.657·37-s − 1.82·43-s + 1/7·49-s − 1.09·53-s + 2.93·67-s − 1.18·71-s − 0.683·77-s − 0.966·107-s + 0.383·109-s − 1.12·113-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 0.157·161-s + 0.0783·163-s + 0.0773·167-s + 1.38·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.322709788\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.322709788\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.910489147431906635124545293093, −7.16206904495078102443340603759, −6.95823931859025270937304818580, −6.51567766184194342113532039110, −6.32378599902051787370213083891, −5.66148254005099040758837895576, −5.20647332325804300823585378129, −4.74070507335651174958467615835, −4.16397640153808834363449325538, −3.81603535652702936958928874958, −3.23033010258396086200303787533, −2.86875159974836367637069146908, −1.95799433761455871462119607011, −1.44679592177937758802165601442, −0.67247478348687725196487606645,
0.67247478348687725196487606645, 1.44679592177937758802165601442, 1.95799433761455871462119607011, 2.86875159974836367637069146908, 3.23033010258396086200303787533, 3.81603535652702936958928874958, 4.16397640153808834363449325538, 4.74070507335651174958467615835, 5.20647332325804300823585378129, 5.66148254005099040758837895576, 6.32378599902051787370213083891, 6.51567766184194342113532039110, 6.95823931859025270937304818580, 7.16206904495078102443340603759, 7.910489147431906635124545293093