| L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 6·11-s + 5·16-s − 12·22-s + 12·23-s − 25-s − 18·29-s − 6·32-s − 20·37-s − 8·43-s + 18·44-s − 24·46-s + 2·50-s + 6·53-s + 36·58-s + 7·64-s + 4·67-s + 40·74-s + 10·79-s + 16·86-s − 24·88-s + 36·92-s − 3·100-s − 12·106-s − 6·107-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 1.80·11-s + 5/4·16-s − 2.55·22-s + 2.50·23-s − 1/5·25-s − 3.34·29-s − 1.06·32-s − 3.28·37-s − 1.21·43-s + 2.71·44-s − 3.53·46-s + 0.282·50-s + 0.824·53-s + 4.72·58-s + 7/8·64-s + 0.488·67-s + 4.64·74-s + 1.12·79-s + 1.72·86-s − 2.55·88-s + 3.75·92-s − 0.299·100-s − 1.16·106-s − 0.580·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.143428262544059580201771154193, −7.56006473562539600008273040402, −7.14400221617286508047479839089, −6.76340153457321918972152567863, −6.70720744145358122288448799487, −5.88431208298112457486858305913, −5.30135083620848369798403743062, −5.10036072121782338740270472262, −4.05162352634345833644814800792, −3.52994453436524682105467711302, −3.32944386865340105186531370454, −2.28166780967037125049719495570, −1.64799092613985375020716144538, −1.22415852747718716380535497945, 0,
1.22415852747718716380535497945, 1.64799092613985375020716144538, 2.28166780967037125049719495570, 3.32944386865340105186531370454, 3.52994453436524682105467711302, 4.05162352634345833644814800792, 5.10036072121782338740270472262, 5.30135083620848369798403743062, 5.88431208298112457486858305913, 6.70720744145358122288448799487, 6.76340153457321918972152567863, 7.14400221617286508047479839089, 7.56006473562539600008273040402, 8.143428262544059580201771154193