| L(s) = 1 | − 2·2-s + 2·4-s + 2·13-s − 4·16-s − 4·17-s − 4·26-s − 20·29-s + 8·32-s + 8·34-s + 4·37-s + 16·41-s − 5·49-s + 4·52-s + 8·53-s + 40·58-s + 14·61-s − 8·64-s − 8·68-s − 28·73-s − 8·74-s − 32·82-s + 34·97-s + 10·98-s − 24·101-s − 16·106-s + 10·109-s + 8·113-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 4-s + 0.554·13-s − 16-s − 0.970·17-s − 0.784·26-s − 3.71·29-s + 1.41·32-s + 1.37·34-s + 0.657·37-s + 2.49·41-s − 5/7·49-s + 0.554·52-s + 1.09·53-s + 5.25·58-s + 1.79·61-s − 64-s − 0.970·68-s − 3.27·73-s − 0.929·74-s − 3.53·82-s + 3.45·97-s + 1.01·98-s − 2.38·101-s − 1.55·106-s + 0.957·109-s + 0.752·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.965886472126962800720761127653, −7.62852485359829009908403777253, −7.32922657340821485296829402521, −6.96141726621690601574492077524, −6.27130274152454875896945514364, −5.87930303915993667052597404250, −5.48558822518018321489922753080, −4.75727383162943095433406736583, −4.01465426298836833468759021488, −3.98830812112494448268150912948, −3.01327782908855925530719016170, −2.23186561512245260821665501913, −1.87603850679094242426395746447, −0.985333224458569944413443756671, 0,
0.985333224458569944413443756671, 1.87603850679094242426395746447, 2.23186561512245260821665501913, 3.01327782908855925530719016170, 3.98830812112494448268150912948, 4.01465426298836833468759021488, 4.75727383162943095433406736583, 5.48558822518018321489922753080, 5.87930303915993667052597404250, 6.27130274152454875896945514364, 6.96141726621690601574492077524, 7.32922657340821485296829402521, 7.62852485359829009908403777253, 7.965886472126962800720761127653