Properties

Label 4-338688-1.1-c1e2-0-81
Degree $4$
Conductor $338688$
Sign $-1$
Analytic cond. $21.5950$
Root an. cond. $2.15570$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 8·19-s + 6·25-s + 27-s − 16·31-s − 12·37-s − 7·49-s − 8·57-s + 6·75-s + 81-s − 16·93-s − 32·103-s − 4·109-s − 12·111-s + 6·121-s + 127-s + 131-s + 137-s + 139-s − 7·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.83·19-s + 6/5·25-s + 0.192·27-s − 2.87·31-s − 1.97·37-s − 49-s − 1.05·57-s + 0.692·75-s + 1/9·81-s − 1.65·93-s − 3.15·103-s − 0.383·109-s − 1.13·111-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.577·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(338688\)    =    \(2^{8} \cdot 3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(21.5950\)
Root analytic conductor: \(2.15570\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 338688,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
7$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.5.a_ag
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \) 2.11.a_ag
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.a_w
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.17.a_abe
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.19.i_cc
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \) 2.23.a_s
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.a_w
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.31.q_ew
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.37.m_eg
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \) 2.41.a_abu
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.a_cs
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.53.a_dy
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.59.a_dy
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.61.a_eo
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.67.a_eo
71$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \) 2.71.a_ada
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.73.a_bu
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.79.a_dq
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.83.a_fu
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \) 2.89.a_afm
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.97.a_hi
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.440951123930045761558245773616, −8.297635011248007729412679886203, −7.58080037702968345398093904975, −7.04393843021292597187342722756, −6.82668319649895128082287985280, −6.26572374511817486088843207999, −5.56466258524291162399402102389, −5.17110525910589494043737019871, −4.55539623160816895376360965836, −3.94551659110290362901620698253, −3.51508956836975258096132205841, −2.86053771912820199602601816102, −2.05920348813472909562362982520, −1.58206922415671555938751512070, 0, 1.58206922415671555938751512070, 2.05920348813472909562362982520, 2.86053771912820199602601816102, 3.51508956836975258096132205841, 3.94551659110290362901620698253, 4.55539623160816895376360965836, 5.17110525910589494043737019871, 5.56466258524291162399402102389, 6.26572374511817486088843207999, 6.82668319649895128082287985280, 7.04393843021292597187342722756, 7.58080037702968345398093904975, 8.297635011248007729412679886203, 8.440951123930045761558245773616

Graph of the $Z$-function along the critical line