| L(s) = 1 | + 3-s + 9-s − 8·19-s + 6·25-s + 27-s − 16·31-s − 12·37-s − 7·49-s − 8·57-s + 6·75-s + 81-s − 16·93-s − 32·103-s − 4·109-s − 12·111-s + 6·121-s + 127-s + 131-s + 137-s + 139-s − 7·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s − 1.83·19-s + 6/5·25-s + 0.192·27-s − 2.87·31-s − 1.97·37-s − 49-s − 1.05·57-s + 0.692·75-s + 1/9·81-s − 1.65·93-s − 3.15·103-s − 0.383·109-s − 1.13·111-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.577·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.440951123930045761558245773616, −8.297635011248007729412679886203, −7.58080037702968345398093904975, −7.04393843021292597187342722756, −6.82668319649895128082287985280, −6.26572374511817486088843207999, −5.56466258524291162399402102389, −5.17110525910589494043737019871, −4.55539623160816895376360965836, −3.94551659110290362901620698253, −3.51508956836975258096132205841, −2.86053771912820199602601816102, −2.05920348813472909562362982520, −1.58206922415671555938751512070, 0,
1.58206922415671555938751512070, 2.05920348813472909562362982520, 2.86053771912820199602601816102, 3.51508956836975258096132205841, 3.94551659110290362901620698253, 4.55539623160816895376360965836, 5.17110525910589494043737019871, 5.56466258524291162399402102389, 6.26572374511817486088843207999, 6.82668319649895128082287985280, 7.04393843021292597187342722756, 7.58080037702968345398093904975, 8.297635011248007729412679886203, 8.440951123930045761558245773616