| L(s) = 1 | + 3-s + 4-s − 4·7-s + 9-s + 12-s + 4·13-s + 16-s − 8·19-s − 4·21-s − 6·25-s + 27-s − 4·28-s − 8·31-s + 36-s − 16·37-s + 4·39-s + 2·43-s + 48-s − 2·49-s + 4·52-s − 8·57-s − 16·61-s − 4·63-s + 64-s + 8·67-s + 20·73-s − 6·75-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/2·4-s − 1.51·7-s + 1/3·9-s + 0.288·12-s + 1.10·13-s + 1/4·16-s − 1.83·19-s − 0.872·21-s − 6/5·25-s + 0.192·27-s − 0.755·28-s − 1.43·31-s + 1/6·36-s − 2.63·37-s + 0.640·39-s + 0.304·43-s + 0.144·48-s − 2/7·49-s + 0.554·52-s − 1.05·57-s − 2.04·61-s − 0.503·63-s + 1/8·64-s + 0.977·67-s + 2.34·73-s − 0.692·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 199692 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 199692 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.020476255077092786616671816203, −8.290506818723521192685804080324, −8.101467935576574417653248009955, −7.32096231625382667213308034502, −6.78357109229019949580867845825, −6.60179582841051422383113975893, −5.94294360088337250572036157519, −5.66859888652078003621682617285, −4.72770536442364898085524768277, −3.99939689788655104010649530295, −3.45261714591514304546140653309, −3.26495541761552880908110302411, −2.18519746266503578273129656850, −1.72854740657408103556538678005, 0,
1.72854740657408103556538678005, 2.18519746266503578273129656850, 3.26495541761552880908110302411, 3.45261714591514304546140653309, 3.99939689788655104010649530295, 4.72770536442364898085524768277, 5.66859888652078003621682617285, 5.94294360088337250572036157519, 6.60179582841051422383113975893, 6.78357109229019949580867845825, 7.32096231625382667213308034502, 8.101467935576574417653248009955, 8.290506818723521192685804080324, 9.020476255077092786616671816203