L(s) = 1 | − 2·3-s + 4-s + 4·5-s + 3·9-s − 11-s − 2·12-s − 8·15-s + 16-s + 4·20-s + 8·23-s + 2·25-s − 4·27-s + 2·33-s + 3·36-s + 12·37-s − 44-s + 12·45-s − 24·47-s − 2·48-s + 2·49-s + 4·53-s − 4·55-s + 24·59-s − 8·60-s + 64-s + 8·67-s − 16·69-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/2·4-s + 1.78·5-s + 9-s − 0.301·11-s − 0.577·12-s − 2.06·15-s + 1/4·16-s + 0.894·20-s + 1.66·23-s + 2/5·25-s − 0.769·27-s + 0.348·33-s + 1/2·36-s + 1.97·37-s − 0.150·44-s + 1.78·45-s − 3.50·47-s − 0.288·48-s + 2/7·49-s + 0.549·53-s − 0.539·55-s + 3.12·59-s − 1.03·60-s + 1/8·64-s + 0.977·67-s − 1.92·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 47916 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47916 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.458275431\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.458275431\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17335307448534281740885152086, −9.626249861423627809345281403043, −9.540951208346174452410797239179, −8.638085568255906260665351447274, −8.036115207635588683933447181084, −7.24765397306950965920878295914, −6.83452626373758769313406188857, −6.15685276163708486295790955262, −6.00719019897905662750930944335, −5.20400804389664174185532774012, −5.03220048416044134767486652990, −4.00861335496683547477816414246, −2.90847219285821389032814298970, −2.14568161285268378115047856310, −1.25132340594816139878900815015,
1.25132340594816139878900815015, 2.14568161285268378115047856310, 2.90847219285821389032814298970, 4.00861335496683547477816414246, 5.03220048416044134767486652990, 5.20400804389664174185532774012, 6.00719019897905662750930944335, 6.15685276163708486295790955262, 6.83452626373758769313406188857, 7.24765397306950965920878295914, 8.036115207635588683933447181084, 8.638085568255906260665351447274, 9.540951208346174452410797239179, 9.626249861423627809345281403043, 10.17335307448534281740885152086