Properties

Label 66.b
Number of curves $4$
Conductor $66$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66.b do not have complex multiplication.

Modular form 66.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} - 4 q^{7} + q^{8} + q^{9} + 2 q^{10} - q^{11} - q^{12} - 6 q^{13} - 4 q^{14} - 2 q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 66.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66.b1 66b3 \([1, 1, 1, -352, -2689]\) \(4824238966273/66\) \(66\) \([2]\) \(16\) \(-0.094954\)  
66.b2 66b2 \([1, 1, 1, -22, -49]\) \(1180932193/4356\) \(4356\) \([2, 2]\) \(8\) \(-0.44153\)  
66.b3 66b4 \([1, 1, 1, -12, -81]\) \(-192100033/2371842\) \(-2371842\) \([2]\) \(16\) \(-0.094954\)  
66.b4 66b1 \([1, 1, 1, -2, -1]\) \(912673/528\) \(528\) \([4]\) \(4\) \(-0.78810\) \(\Gamma_0(N)\)-optimal