L(s) = 1 | + 4·3-s − 4·4-s + 6·9-s − 16·12-s + 12·16-s + 12·23-s − 10·25-s − 4·27-s + 8·31-s − 24·36-s − 4·37-s + 6·47-s + 48·48-s − 5·49-s − 6·53-s + 18·59-s − 32·64-s − 10·67-s + 48·69-s − 24·71-s − 40·75-s − 37·81-s − 30·89-s − 48·92-s + 32·93-s + 16·97-s + 40·100-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 2·4-s + 2·9-s − 4.61·12-s + 3·16-s + 2.50·23-s − 2·25-s − 0.769·27-s + 1.43·31-s − 4·36-s − 0.657·37-s + 0.875·47-s + 6.92·48-s − 5/7·49-s − 0.824·53-s + 2.34·59-s − 4·64-s − 1.22·67-s + 5.77·69-s − 2.84·71-s − 4.61·75-s − 4.11·81-s − 3.17·89-s − 5.00·92-s + 3.31·93-s + 1.62·97-s + 4·100-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4231249 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4231249 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.31772661569686145839950009537, −7.24608117046774542434607176007, −6.32422609820024788903427802150, −5.65570170042982434902737626376, −5.63552611516237010198355246364, −4.92780655818062801617168633088, −4.33690474543179484375177890543, −4.31819599976110427100296482240, −3.60796211674639736885273377886, −3.17120571829008549416473920677, −3.09552236851761980264613157620, −2.40527884395801481706315448413, −1.70245103388878777142529973135, −1.00837451956744911826605701714, 0,
1.00837451956744911826605701714, 1.70245103388878777142529973135, 2.40527884395801481706315448413, 3.09552236851761980264613157620, 3.17120571829008549416473920677, 3.60796211674639736885273377886, 4.31819599976110427100296482240, 4.33690474543179484375177890543, 4.92780655818062801617168633088, 5.63552611516237010198355246364, 5.65570170042982434902737626376, 6.32422609820024788903427802150, 7.24608117046774542434607176007, 7.31772661569686145839950009537