L(s) = 1 | + 2-s + 4-s + 3·5-s + 8-s + 3·10-s + 16-s + 4·19-s + 3·20-s + 3·23-s − 25-s − 3·29-s + 32-s + 4·38-s + 3·40-s − 2·43-s + 3·46-s + 15·47-s − 4·49-s − 50-s − 9·53-s − 3·58-s + 64-s + 67-s − 9·71-s − 14·73-s + 4·76-s + 3·80-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 1.34·5-s + 0.353·8-s + 0.948·10-s + 1/4·16-s + 0.917·19-s + 0.670·20-s + 0.625·23-s − 1/5·25-s − 0.557·29-s + 0.176·32-s + 0.648·38-s + 0.474·40-s − 0.304·43-s + 0.442·46-s + 2.18·47-s − 4/7·49-s − 0.141·50-s − 1.23·53-s − 0.393·58-s + 1/8·64-s + 0.122·67-s − 1.06·71-s − 1.63·73-s + 0.458·76-s + 0.335·80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.039883816\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.039883816\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.707678009785505293032446280294, −9.146825666475601982002236692060, −8.848543709878333731647077979935, −8.035015799304717455751275274756, −7.39680522038144146312052455032, −7.17632354082684406385884323612, −6.26694480303698990075616677282, −6.02332739575532603580210687486, −5.49838269001842769265702709456, −5.01113828880685326138992577887, −4.35092759043790437472236470691, −3.57087191222736082935298638676, −2.89762088885868424882568128390, −2.16312313271599019441163164389, −1.38282389508305668533759550136,
1.38282389508305668533759550136, 2.16312313271599019441163164389, 2.89762088885868424882568128390, 3.57087191222736082935298638676, 4.35092759043790437472236470691, 5.01113828880685326138992577887, 5.49838269001842769265702709456, 6.02332739575532603580210687486, 6.26694480303698990075616677282, 7.17632354082684406385884323612, 7.39680522038144146312052455032, 8.035015799304717455751275274756, 8.848543709878333731647077979935, 9.146825666475601982002236692060, 9.707678009785505293032446280294