Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 53 x^{2} )( 1 + 12 x + 53 x^{2} )$ |
$1 + 9 x + 70 x^{2} + 477 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.433942022438$, $\pm0.808354237277$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $160$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3366$ | $8058204$ | $22204774944$ | $62262712423296$ | $174855785539350366$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $63$ | $2869$ | $149148$ | $7890865$ | $418119723$ | $22164721738$ | $1174712257215$ | $62259690179329$ | $3299763556504764$ | $174887469153494989$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):
- $y^2=6 x^6+37 x^5+39 x^4+24 x^3+8 x^2+31 x+4$
- $y^2=49 x^6+33 x^5+48 x^4+29 x^3+8 x^2+32 x+33$
- $y^2=27 x^6+34 x^5+17 x^4+14 x^3+41 x^2+33 x+40$
- $y^2=22 x^6+36 x^5+49 x^4+24 x^3+14 x^2+33 x+14$
- $y^2=6 x^6+32 x^5+32 x^4+5 x^3+15 x^2+51 x+10$
- $y^2=43 x^6+12 x^5+11 x^4+33 x^3+17 x^2+21 x+8$
- $y^2=37 x^6+17 x^4+16 x^3+42 x^2+24 x+24$
- $y^2=34 x^6+2 x^5+22 x^4+16 x^3+30 x^2+26 x+24$
- $y^2=52 x^6+46 x^5+x^4+4 x^3+8 x^2+24 x+38$
- $y^2=23 x^6+4 x^5+15 x^4+48 x^3+6 x^2+4 x+13$
- $y^2=6 x^6+28 x^5+47 x^4+8 x^3+45 x^2+31 x+38$
- $y^2=9 x^6+15 x^5+18 x^4+50 x^3+13 x^2+17 x+40$
- $y^2=37 x^6+5 x^5+4 x^4+20 x^3+17 x^2+28 x+38$
- $y^2=29 x^6+29 x^5+20 x^4+3 x^3+11 x^2+28 x+23$
- $y^2=13 x^6+12 x^5+20 x^4+14 x^3+7 x^2+37 x+20$
- $y^2=22 x^6+27 x^5+37 x^4+25 x^3+35 x^2+7 x+52$
- $y^2=41 x^6+13 x^5+41 x^4+11 x^3+3 x^2+31 x+15$
- $y^2=3 x^6+23 x^5+x^4+15 x^3+22 x^2+21 x+21$
- $y^2=32 x^6+33 x^5+13 x^4+29 x^3+16 x^2+52 x+34$
- $y^2=14 x^6+5 x^5+6 x^4+41 x^3+50 x^2+39 x+22$
- and 140 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ad $\times$ 1.53.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ap_fm | $2$ | (not in LMFDB) |
2.53.aj_cs | $2$ | (not in LMFDB) |
2.53.p_fm | $2$ | (not in LMFDB) |