Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 65 x^{2} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.190505679812$, $\pm0.809494320188$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-113})\) |
Galois group: | $C_2^2$ |
Jacobians: | $273$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7857$ | $61732449$ | $496982560932$ | $3938046819391881$ | $31181719919291187777$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $7792$ | $704970$ | $62765476$ | $5584059450$ | $496983830902$ | $44231334895530$ | $3936588786761668$ | $350356403707485210$ | $31181719908616191952$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 273 curves (of which all are hyperelliptic):
- $y^2=25 x^6+28 x^5+2 x^4+13 x^3+20 x^2+8 x+43$
- $y^2=75 x^6+84 x^5+6 x^4+39 x^3+60 x^2+24 x+40$
- $y^2=24 x^6+49 x^5+3 x^4+51 x^3+40 x^2+88 x+8$
- $y^2=50 x^6+80 x^5+85 x^4+64 x^3+50 x^2+75 x+29$
- $y^2=61 x^6+62 x^5+77 x^4+14 x^3+61 x^2+47 x+87$
- $y^2=12 x^6+31 x^5+38 x^4+61 x^3+9 x^2+41 x+71$
- $y^2=75 x^6+35 x^5+78 x^4+84 x^3+7 x^2+5 x+10$
- $y^2=47 x^6+16 x^5+56 x^4+74 x^3+21 x^2+15 x+30$
- $y^2=49 x^6+81 x^5+30 x^3+44 x^2+47 x+66$
- $y^2=58 x^6+65 x^5+x^3+43 x^2+52 x+20$
- $y^2=29 x^6+45 x^5+36 x^4+11 x^3+6 x^2+68 x+64$
- $y^2=54 x^6+24 x^5+31 x^4+77 x^3+25 x^2+64 x+8$
- $y^2=73 x^6+72 x^5+4 x^4+53 x^3+75 x^2+14 x+24$
- $y^2=5 x^6+63 x^5+56 x^4+54 x^3+6 x^2+3 x+37$
- $y^2=15 x^6+11 x^5+79 x^4+73 x^3+18 x^2+9 x+22$
- $y^2=52 x^6+29 x^5+75 x^4+43 x^3+55 x^2+5 x+61$
- $y^2=67 x^6+87 x^5+47 x^4+40 x^3+76 x^2+15 x+5$
- $y^2=40 x^6+3 x^5+71 x^4+21 x^3+85 x^2+32 x+24$
- $y^2=31 x^6+9 x^5+35 x^4+63 x^3+77 x^2+7 x+72$
- $y^2=31 x^6+65 x^4+70 x^3+59 x^2+53 x+19$
- and 253 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-113})\). |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.acn 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-339}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.a_cn | $4$ | (not in LMFDB) |
2.89.abb_mu | $12$ | (not in LMFDB) |
2.89.bb_mu | $12$ | (not in LMFDB) |