Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 3 x + 71 x^{2} )( 1 + 6 x + 71 x^{2} )$ |
$1 + 9 x + 160 x^{2} + 639 x^{3} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.556968285566$, $\pm0.615871442562$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $40$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5850$ | $26640900$ | $127502505000$ | $645530959101600$ | $3255511666751808750$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $81$ | $5281$ | $356238$ | $25402921$ | $1804377951$ | $128100213178$ | $9095111056161$ | $645753573694321$ | $45848501088886818$ | $3255243547057117801$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=67 x^6+42 x^5+56 x^4+43 x^3+4 x^2+11 x+21$
- $y^2=38 x^6+57 x^5+40 x^4+7 x^3+67 x^2+13 x+36$
- $y^2=38 x^6+19 x^5+21 x^4+17 x^3+20 x^2+61 x$
- $y^2=3 x^6+60 x^5+39 x^4+30 x^3+51 x^2+34 x+10$
- $y^2=9 x^6+8 x^5+27 x^4+30 x^3+28 x^2+62 x+32$
- $y^2=43 x^6+58 x^5+26 x^4+60 x^3+70 x^2+2 x+67$
- $y^2=13 x^6+5 x^5+14 x^4+54 x^3+47 x^2+58 x+39$
- $y^2=7 x^6+17 x^5+53 x^4+23 x^3+56 x^2+63 x+52$
- $y^2=68 x^6+57 x^5+4 x^4+11 x^3+48 x^2+24 x+60$
- $y^2=44 x^6+38 x^5+62 x^4+67 x^3+61 x^2+35 x+15$
- $y^2=14 x^6+61 x^5+56 x^4+42 x^3+45 x^2+3 x+7$
- $y^2=69 x^6+60 x^5+65 x^4+34 x^3+62 x^2+38 x+50$
- $y^2=7 x^6+46 x^5+24 x^4+46 x^3+27 x^2+14 x+31$
- $y^2=12 x^6+41 x^5+22 x^4+21 x^3+43 x^2+43 x+32$
- $y^2=9 x^6+8 x^5+3 x^4+53 x^3+60 x^2+64$
- $y^2=63 x^6+12 x^5+11 x^4+52 x^3+47 x^2+70 x+45$
- $y^2=40 x^6+22 x^5+43 x^4+70 x^3+48 x^2+25 x+41$
- $y^2=29 x^6+10 x^5+61 x^4+9 x^3+24 x^2+58 x+23$
- $y^2=12 x^6+29 x^5+47 x^4+63 x^3+41 x^2+15 x$
- $y^2=31 x^6+54 x^5+38 x^4+54 x^3+59 x^2+29 x+19$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.d $\times$ 1.71.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.aj_ge | $2$ | (not in LMFDB) |
2.71.ad_eu | $2$ | (not in LMFDB) |
2.71.d_eu | $2$ | (not in LMFDB) |