Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 29 x^{2} )( 1 + 3 x + 29 x^{2} )$ |
$1 + 3 x + 58 x^{2} + 87 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.589851478136$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $18$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $990$ | $801900$ | $589164840$ | $498550852800$ | $420890705536950$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $33$ | $949$ | $24156$ | $704881$ | $20520093$ | $594866122$ | $17249634897$ | $500245896001$ | $14507150284044$ | $420707235367549$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=25 x^6+22 x^5+25 x^4+11 x^3+3 x^2+13$
- $y^2=26 x^6+7 x^5+24 x^4+20 x^3+15 x^2+x+22$
- $y^2=19 x^6+20 x^5+6 x^4+11 x^3+11 x^2+11 x+7$
- $y^2=13 x^6+14 x^5+8 x^4+12 x^3+28 x^2+23 x+19$
- $y^2=4 x^6+10 x^5+14 x^4+17 x^3+23 x^2+4 x+1$
- $y^2=7 x^6+25 x^5+25 x^4+7 x^3+8 x^2+20 x+28$
- $y^2=14 x^5+16 x^4+5 x^3+9 x^2+9 x+28$
- $y^2=7 x^6+21 x^5+6 x^4+2 x^3+10 x^2+18 x+24$
- $y^2=15 x^6+13 x^5+7 x^4+24 x^3+5 x^2+9 x+23$
- $y^2=x^6+3 x^5+23 x^4+28 x^3+3 x^2+16 x+15$
- $y^2=9 x^6+23 x^5+21 x^4+27 x^3+7 x^2+25 x+28$
- $y^2=18 x^6+26 x^5+10 x^4+13 x^3+6 x^2+21 x+25$
- $y^2=24 x^6+5 x^5+20 x^4+26 x^3+11 x^2+21 x+6$
- $y^2=12 x^6+9 x^5+x^4+2 x^3+10 x^2+23 x+24$
- $y^2=14 x^6+8 x^5+5 x^4+19 x^3+18 x^2+25 x+1$
- $y^2=17 x^6+15 x^5+24 x^4+4 x^3+27 x^2+5 x+21$
- $y^2=3 x^6+16 x^5+21 x^3+x^2+26 x+17$
- $y^2=7 x^6+16 x^5+12 x^4+11 x^3+14 x^2+x+13$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.a $\times$ 1.29.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{29^{2}}$ is 1.841.bx $\times$ 1.841.cg. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ad_cg | $2$ | (not in LMFDB) |