Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 23 x^{2} )( 1 + 6 x + 23 x^{2} )$ |
$1 - 3 x - 8 x^{2} - 69 x^{3} + 529 x^{4}$ | |
Frobenius angles: | $\pm0.112386341891$, $\pm0.715122617226$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $28$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $450$ | $267300$ | $144358200$ | $78532740000$ | $41425151973750$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $21$ | $505$ | $11862$ | $280633$ | $6436131$ | $148033690$ | $3405033597$ | $78311158993$ | $1801154808666$ | $41426534571025$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=15 x^6+3 x^5+6 x^4+21 x^3+3 x^2+17 x+11$
- $y^2=17 x^6+11 x^5+22 x^4+12 x^3+19 x^2+11 x+14$
- $y^2=14 x^6+19 x^5+8 x^4+5 x^3+14 x^2+14 x+9$
- $y^2=18 x^6+x^5+19 x^4+11 x^3+12 x^2+21 x+13$
- $y^2=13 x^6+6 x^5+20 x^4+4 x^3+10 x^2+3 x+13$
- $y^2=4 x^6+8 x^5+18 x^4+20 x^3+14 x^2+12 x+16$
- $y^2=5 x^6+19 x^5+22 x^4+20 x^3+17 x^2+21 x+1$
- $y^2=10 x^6+4 x^5+10 x^4+22 x^3+18 x^2+9 x+11$
- $y^2=14 x^6+13 x^5+2 x^4+22 x^3+x^2+14 x+2$
- $y^2=19 x^6+15 x^5+x^4+16 x^3+7 x^2+x+15$
- $y^2=21 x^6+5 x^5+2 x^4+21 x^3+5 x^2+3 x+14$
- $y^2=5 x^6+15 x^5+4 x^4+19 x^3+14 x^2+21 x+20$
- $y^2=19 x^6+19 x^5+22 x^4+12 x^3+5 x^2+22 x+7$
- $y^2=6 x^6+4 x^5+20 x^4+4 x^3+18 x^2+14 x+1$
- $y^2=18 x^6+17 x^5+12 x^4+18 x^3+18 x^2+17 x+10$
- $y^2=6 x^6+13 x^5+6 x^4+6 x^3+14 x^2+22 x+14$
- $y^2=6 x^6+15 x^5+6 x^4+12 x^3+21 x^2+2 x+17$
- $y^2=17 x^6+14 x^5+19 x^4+4 x^3+22 x^2+20 x+10$
- $y^2=8 x^6+12 x^5+12 x^4+22 x^3+5 x^2+10 x+22$
- $y^2=x^6+x^5+17 x^4+7 x^3+8 x^2+17 x+6$
- $y^2=3 x^6+2 x^5+12 x^4+14 x^3+12 x^2+12 x+12$
- $y^2=14 x^6+8 x^5+13 x^4+11 x^3+18 x^2+20 x+19$
- $y^2=6 x^6+2 x^5+22 x^4+11 x^3+18 x^2+7 x+5$
- $y^2=5 x^6+20 x^5+9 x^4+19 x^3+3 x^2+5 x+3$
- $y^2=17 x^6+20 x^5+14 x^4+7 x^3+15 x^2+6 x+21$
- $y^2=20 x^6+11 x^5+7 x^4+15 x^3+16 x^2+3 x+20$
- $y^2=2 x^6+13 x^5+12 x^4+4 x^3+9 x^2+3 x+5$
- $y^2=17 x^6+x^5+22 x^4+15 x^2+3 x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The isogeny class factors as 1.23.aj $\times$ 1.23.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.ap_dw | $2$ | (not in LMFDB) |
2.23.d_ai | $2$ | (not in LMFDB) |
2.23.p_dw | $2$ | (not in LMFDB) |