L(s) = 1 | − 2·13-s + 6·25-s − 10·37-s − 13·49-s + 6·61-s − 18·73-s − 2·97-s + 20·109-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 0.554·13-s + 6/5·25-s − 1.64·37-s − 1.85·49-s + 0.768·61-s − 2.10·73-s − 0.203·97-s + 1.91·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.147058914605094015118952073282, −7.58383159735542561810745823831, −7.06803430323416466127555950486, −6.86802492978569291579684133863, −6.30183556615537715419607285207, −5.78623430889251711679886132715, −5.25141935112497300757042352779, −4.81483053218952615754421974047, −4.46173114050194870794410794789, −3.67453283891296045209507800715, −3.23216159518114207571003942573, −2.66264033546576735968039280318, −1.94175651448317344700191208382, −1.21598537045051801145602547315, 0,
1.21598537045051801145602547315, 1.94175651448317344700191208382, 2.66264033546576735968039280318, 3.23216159518114207571003942573, 3.67453283891296045209507800715, 4.46173114050194870794410794789, 4.81483053218952615754421974047, 5.25141935112497300757042352779, 5.78623430889251711679886132715, 6.30183556615537715419607285207, 6.86802492978569291579684133863, 7.06803430323416466127555950486, 7.58383159735542561810745823831, 8.147058914605094015118952073282