Properties

Label 2.89.a_ags
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 - 174 x^{2} + 7921 x^{4}$
Frobenius angles:  $\pm0.0338042870639$, $\pm0.966195712936$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{22})\)
Galois group:  $C_2^2$
Jacobians:  $9$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7748$ $60031504$ $496980157700$ $3934777896484864$ $31181719924525829828$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $7574$ $704970$ $62713374$ $5584059450$ $496979024438$ $44231334895530$ $3936588639990334$ $350356403707485210$ $31181719919085476054$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89^{2}}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{22})\).
Endomorphism algebra over $\overline{\F}_{89}$
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.ags 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.ae_ha$4$(not in LMFDB)
2.89.a_gs$4$(not in LMFDB)
2.89.e_ha$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.ae_ha$4$(not in LMFDB)
2.89.a_gs$4$(not in LMFDB)
2.89.e_ha$4$(not in LMFDB)
2.89.ac_adh$12$(not in LMFDB)
2.89.c_adh$12$(not in LMFDB)