L(s) = 1 | + 6·7-s + 12·19-s − 9·25-s + 18·31-s − 4·37-s + 12·43-s + 13·49-s + 16·61-s + 12·67-s + 18·73-s − 18·97-s − 24·103-s − 36·109-s − 13·121-s + 127-s + 131-s + 72·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + 173-s − 54·175-s + ⋯ |
L(s) = 1 | + 2.26·7-s + 2.75·19-s − 9/5·25-s + 3.23·31-s − 0.657·37-s + 1.82·43-s + 13/7·49-s + 2.04·61-s + 1.46·67-s + 2.10·73-s − 1.82·97-s − 2.36·103-s − 3.44·109-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 6.24·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 0.0760·173-s − 4.08·175-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.271969761\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.271969761\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.180464945333468393072503118033, −7.82476086711398995912338456757, −7.75120135592916568614052087932, −6.93499396476405803707004808409, −6.65325213254225917768927617170, −5.81482520780945663550334444725, −5.45678967002093979727974577207, −5.03134570361553185426866134499, −4.78635677042327797457152601343, −3.94091986861202608778869492074, −3.77979388504550471995644973896, −2.63884396406011957309091091690, −2.42238256260612007081644598630, −1.30229225574123782841215729642, −1.11568290382473683806344984693,
1.11568290382473683806344984693, 1.30229225574123782841215729642, 2.42238256260612007081644598630, 2.63884396406011957309091091690, 3.77979388504550471995644973896, 3.94091986861202608778869492074, 4.78635677042327797457152601343, 5.03134570361553185426866134499, 5.45678967002093979727974577207, 5.81482520780945663550334444725, 6.65325213254225917768927617170, 6.93499396476405803707004808409, 7.75120135592916568614052087932, 7.82476086711398995912338456757, 8.180464945333468393072503118033