Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 67 x^{2} )^{2}$ |
$1 - 12 x + 170 x^{2} - 804 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.380553124364$, $\pm0.380553124364$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3844$ | $21049744$ | $91055476516$ | $406042489046016$ | $1822648562427420484$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $4686$ | $302744$ | $20149870$ | $1349984936$ | $90457625022$ | $6060716453960$ | $406067757377374$ | $27206534550360728$ | $1822837800128167086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=12 x^6+46 x^5+34 x^4+61 x^3+34 x^2+46 x+12$
- $y^2=66 x^6+36 x^5+5 x^4+9 x^3+8 x^2+26 x+18$
- $y^2=57 x^6+39 x^5+35 x^4+50 x^3+14 x^2+18 x+19$
- $y^2=6 x^6+12 x^5+66 x^4+64 x^3+60 x^2+54 x+21$
- $y^2=56 x^6+63 x^5+57 x^4+65 x^3+35 x^2+40 x+27$
- $y^2=22 x^6+x^5+30 x^4+55 x^3+56 x^2+60 x+26$
- $y^2=26 x^6+41 x^5+25 x^4+53 x^3+13 x^2+36 x+26$
- $y^2=28 x^6+2 x^5+52 x^4+42 x^3+56 x^2+66 x+6$
- $y^2=15 x^6+22 x^4+45 x^3+47 x^2+3 x+15$
- $y^2=16 x^6+7 x^5+54 x^4+46 x^3+28 x^2+8 x$
- $y^2=45 x^6+51 x^4+51 x^2+45$
- $y^2=64 x^6+19 x^5+39 x^4+50 x^3+13 x^2+53 x+32$
- $y^2=41 x^6+51 x^5+10 x^4+62 x^3+5 x^2+18 x+24$
- $y^2=9 x^6+18 x^5+49 x^4+10 x^3+20 x^2+34 x+59$
- $y^2=56 x^6+43 x^5+45 x^4+45 x^3+66 x^2+30 x+17$
- $y^2=19 x^6+32 x^5+3 x^4+65 x^3+45 x^2+18 x+38$
- $y^2=62 x^5+45 x^4+63 x^3+52 x^2+46 x+1$
- $y^2=34 x^6+59 x^5+38 x^4+14 x^3+58 x^2+35 x+63$
- $y^2=8 x^6+45 x^5+35 x^4+2 x^3+8 x^2+45 x+31$
- $y^2=27 x^6+42 x^4+16 x^3+58 x^2+27 x+28$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$ |
Base change
This is a primitive isogeny class.