| L(s) = 1 | − 2·3-s − 4-s − 6·5-s + 3·9-s + 2·12-s + 12·15-s − 3·16-s + 6·20-s + 2·23-s + 17·25-s − 4·27-s + 8·31-s − 3·36-s + 8·37-s − 18·45-s + 6·48-s + 13·49-s − 18·53-s + 18·59-s − 12·60-s + 7·64-s + 26·67-s − 4·69-s + 18·71-s − 34·75-s + 18·80-s + 5·81-s + ⋯ |
| L(s) = 1 | − 1.15·3-s − 1/2·4-s − 2.68·5-s + 9-s + 0.577·12-s + 3.09·15-s − 3/4·16-s + 1.34·20-s + 0.417·23-s + 17/5·25-s − 0.769·27-s + 1.43·31-s − 1/2·36-s + 1.31·37-s − 2.68·45-s + 0.866·48-s + 13/7·49-s − 2.47·53-s + 2.34·59-s − 1.54·60-s + 7/8·64-s + 3.17·67-s − 0.481·69-s + 2.13·71-s − 3.92·75-s + 2.01·80-s + 5/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 69705801 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69705801 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7558008922\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7558008922\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.79369030209787245760599536774, −7.75938630665330189228983193228, −7.31227841084767205540134030670, −6.90087654052754902736493526701, −6.64365935279650456273341152873, −6.43142681036308275889569540450, −5.94949984786149832297025335718, −5.28092747176269445710006847732, −5.10765369181472608697138319425, −4.89728108244230320461208912159, −4.32531250203750995638951849772, −4.03496162580471825279748107260, −3.91403328624653989304455113290, −3.65793350539223991284238455326, −2.81182889064679677112178949236, −2.68716809064709041360342941713, −1.95104083942244091599974349277, −1.09320895185131796979173745916, −0.60583176823298959623357514959, −0.45193842986506214198940235221,
0.45193842986506214198940235221, 0.60583176823298959623357514959, 1.09320895185131796979173745916, 1.95104083942244091599974349277, 2.68716809064709041360342941713, 2.81182889064679677112178949236, 3.65793350539223991284238455326, 3.91403328624653989304455113290, 4.03496162580471825279748107260, 4.32531250203750995638951849772, 4.89728108244230320461208912159, 5.10765369181472608697138319425, 5.28092747176269445710006847732, 5.94949984786149832297025335718, 6.43142681036308275889569540450, 6.64365935279650456273341152873, 6.90087654052754902736493526701, 7.31227841084767205540134030670, 7.75938630665330189228983193228, 7.79369030209787245760599536774