Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 26 x^{2} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.198649959225$, $\pm0.801350040775$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{3}, \sqrt{-14})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $200$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1656$ | $2742336$ | $4750217784$ | $8000118088704$ | $13422659078648376$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $1630$ | $68922$ | $2831134$ | $115856202$ | $4750331326$ | $194754273882$ | $7984922102974$ | $327381934393962$ | $13422658847144350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 200 curves (of which all are hyperelliptic):
- $y^2=40 x^6+x^5+15 x^4+29 x^3+31 x^2+5 x+17$
- $y^2=21 x^6+24 x^5+40 x^3+36 x^2+23 x+18$
- $y^2=3 x^6+21 x^5+35 x^3+11 x^2+15 x+26$
- $y^2=5 x^6+4 x^5+22 x^4+7 x^2+12 x+40$
- $y^2=30 x^6+24 x^5+9 x^4+x^2+31 x+35$
- $y^2=32 x^6+8 x^5+34 x^4+27 x^3+10 x^2+3 x+12$
- $y^2=28 x^6+7 x^5+40 x^4+39 x^3+19 x^2+18 x+31$
- $y^2=40 x^5+26 x^4+10 x^3+4 x^2+38 x+15$
- $y^2=9 x^6+23 x^5+7 x^4+31 x^3+3 x^2+32 x+6$
- $y^2=18 x^6+37 x^5+26 x^4+8 x^3+28 x+20$
- $y^2=29 x^6+30 x^5+8 x^4+16 x^3+24 x^2+29 x+28$
- $y^2=10 x^6+16 x^5+7 x^4+14 x^3+21 x^2+10 x+4$
- $y^2=18 x^6+11 x^5+3 x^4+6 x^3+16 x^2+6 x+39$
- $y^2=26 x^6+25 x^5+18 x^4+36 x^3+14 x^2+36 x+29$
- $y^2=31 x^6+38 x^5+25 x^4+39 x^3+32 x^2+11 x+35$
- $y^2=26 x^6+27 x^5+24 x^4+14 x^3+10 x^2+16 x+26$
- $y^2=33 x^6+39 x^5+21 x^4+2 x^3+19 x^2+14 x+33$
- $y^2=15 x^6+16 x^5+26 x^4+36 x^3+17 x^2+12$
- $y^2=x^6+18 x^5+27 x^4+5 x^3+4 x^2+24 x+28$
- $y^2=6 x^6+26 x^5+39 x^4+30 x^3+24 x^2+21 x+4$
- and 180 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-14})\). |
| The base change of $A$ to $\F_{41^{2}}$ is 1.1681.aba 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.a_ba | $4$ | (not in LMFDB) |
| 2.41.as_ft | $12$ | (not in LMFDB) |
| 2.41.s_ft | $12$ | (not in LMFDB) |