L(s) = 1 | − 2·13-s + 5·25-s + 37-s − 13·49-s − 26·61-s − 14·73-s + 19·97-s − 17·109-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 13·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 0.554·13-s + 25-s + 0.164·37-s − 1.85·49-s − 3.32·61-s − 1.63·73-s + 1.92·97-s − 1.62·109-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.075098108937574106386431551332, −7.64178536588947326419968568235, −7.41220829832496033541109828274, −6.76747271692198295864540616259, −6.30975342882978309006226820864, −6.02668048597124533027028099287, −5.25438358722230153744718995476, −4.89833974327314158075997905972, −4.47062949772725493165107051870, −3.87358522028206161323182049486, −3.04680888816919758940538361321, −2.88508373014383489586836726588, −1.93383961094213020200982579227, −1.26394507790874702349158711770, 0,
1.26394507790874702349158711770, 1.93383961094213020200982579227, 2.88508373014383489586836726588, 3.04680888816919758940538361321, 3.87358522028206161323182049486, 4.47062949772725493165107051870, 4.89833974327314158075997905972, 5.25438358722230153744718995476, 6.02668048597124533027028099287, 6.30975342882978309006226820864, 6.76747271692198295864540616259, 7.41220829832496033541109828274, 7.64178536588947326419968568235, 8.075098108937574106386431551332