Properties

Label 4-792e2-1.1-c1e2-0-103
Degree $4$
Conductor $627264$
Sign $-1$
Analytic cond. $39.9948$
Root an. cond. $2.51478$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·13-s + 5·25-s + 37-s − 13·49-s − 26·61-s − 14·73-s + 19·97-s − 17·109-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 13·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 0.554·13-s + 25-s + 0.164·37-s − 1.85·49-s − 3.32·61-s − 1.63·73-s + 1.92·97-s − 1.62·109-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(627264\)    =    \(2^{6} \cdot 3^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(39.9948\)
Root analytic conductor: \(2.51478\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 627264,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11$C_2$ \( 1 + p T^{2} \)
good5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.5.a_af
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) 2.7.a_n
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.13.c_aj
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.17.a_ar
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) 2.19.a_bl
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.29.a_abd
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.31.a_n
37$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.37.ab_abk
41$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.41.a_abp
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.43.a_w
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.53.a_acb
59$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.59.a_eo
61$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \) 2.61.ba_lf
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.67.a_ef
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \) 2.73.o_hn
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \) 2.79.a_afb
83$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.83.a_gk
89$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \) 2.89.a_adl
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 5 T + p T^{2} ) \) 2.97.at_ke
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.075098108937574106386431551332, −7.64178536588947326419968568235, −7.41220829832496033541109828274, −6.76747271692198295864540616259, −6.30975342882978309006226820864, −6.02668048597124533027028099287, −5.25438358722230153744718995476, −4.89833974327314158075997905972, −4.47062949772725493165107051870, −3.87358522028206161323182049486, −3.04680888816919758940538361321, −2.88508373014383489586836726588, −1.93383961094213020200982579227, −1.26394507790874702349158711770, 0, 1.26394507790874702349158711770, 1.93383961094213020200982579227, 2.88508373014383489586836726588, 3.04680888816919758940538361321, 3.87358522028206161323182049486, 4.47062949772725493165107051870, 4.89833974327314158075997905972, 5.25438358722230153744718995476, 6.02668048597124533027028099287, 6.30975342882978309006226820864, 6.76747271692198295864540616259, 7.41220829832496033541109828274, 7.64178536588947326419968568235, 8.075098108937574106386431551332

Graph of the $Z$-function along the critical line