L(s) = 1 | − 2-s + 4-s − 8-s + 4·11-s + 16-s − 4·17-s − 4·22-s − 2·25-s + 8·29-s − 4·31-s − 32-s + 4·34-s − 4·37-s − 4·41-s + 4·44-s − 10·49-s + 2·50-s − 8·58-s + 4·62-s + 64-s − 16·67-s − 4·68-s + 4·74-s + 4·82-s − 8·83-s − 4·88-s − 12·97-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1.20·11-s + 1/4·16-s − 0.970·17-s − 0.852·22-s − 2/5·25-s + 1.48·29-s − 0.718·31-s − 0.176·32-s + 0.685·34-s − 0.657·37-s − 0.624·41-s + 0.603·44-s − 1.42·49-s + 0.282·50-s − 1.05·58-s + 0.508·62-s + 1/8·64-s − 1.95·67-s − 0.485·68-s + 0.464·74-s + 0.441·82-s − 0.878·83-s − 0.426·88-s − 1.21·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.247546677414412379452316054223, −7.83559585441972008002539773015, −7.11436341230492644043971599477, −6.92489867476754446919607744684, −6.45580633785827035415011559528, −6.04637008437957373684957468214, −5.52473911372432491400298030079, −4.73381052597072891558853765596, −4.47418302487380259687564742910, −3.73781673727395107297505755240, −3.25410204939170867227324118178, −2.55999587436861408336452357208, −1.80095246466512907177948104322, −1.25447735745291973388640127652, 0,
1.25447735745291973388640127652, 1.80095246466512907177948104322, 2.55999587436861408336452357208, 3.25410204939170867227324118178, 3.73781673727395107297505755240, 4.47418302487380259687564742910, 4.73381052597072891558853765596, 5.52473911372432491400298030079, 6.04637008437957373684957468214, 6.45580633785827035415011559528, 6.92489867476754446919607744684, 7.11436341230492644043971599477, 7.83559585441972008002539773015, 8.247546677414412379452316054223