L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 2·9-s − 6·13-s + 5·16-s − 4·18-s + 12·26-s − 12·29-s − 6·32-s + 6·36-s + 12·37-s − 24·47-s − 14·49-s − 18·52-s + 24·58-s + 20·61-s + 7·64-s − 24·67-s − 8·72-s + 12·73-s − 24·74-s + 16·79-s − 5·81-s − 24·83-s + 48·94-s + 36·97-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 2/3·9-s − 1.66·13-s + 5/4·16-s − 0.942·18-s + 2.35·26-s − 2.22·29-s − 1.06·32-s + 36-s + 1.97·37-s − 3.50·47-s − 2·49-s − 2.49·52-s + 3.15·58-s + 2.56·61-s + 7/8·64-s − 2.93·67-s − 0.942·72-s + 1.40·73-s − 2.78·74-s + 1.80·79-s − 5/9·81-s − 2.63·83-s + 4.95·94-s + 3.65·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6093629831\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6093629831\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61936807274272778021164034426, −10.03316412522753416286147133926, −9.876213824945739776814976696835, −9.492341932860479083191995464389, −9.313478676694928712128248966662, −8.564635655145774684766379214295, −8.146344418580692682987618376928, −7.61288131411055002934440299297, −7.53998109098810475670411649059, −6.91307083528489320124079515969, −6.55113378925142431660655389298, −5.98002391130188636884810674640, −5.39712771134260145217386919105, −4.76986491846830856478672218879, −4.36310071733014523680322069996, −3.39019625402270187535838872541, −3.00491013221464840196136923641, −1.94967757998084172562765226889, −1.84841971957976754733369130889, −0.51619564719349802105763267625,
0.51619564719349802105763267625, 1.84841971957976754733369130889, 1.94967757998084172562765226889, 3.00491013221464840196136923641, 3.39019625402270187535838872541, 4.36310071733014523680322069996, 4.76986491846830856478672218879, 5.39712771134260145217386919105, 5.98002391130188636884810674640, 6.55113378925142431660655389298, 6.91307083528489320124079515969, 7.53998109098810475670411649059, 7.61288131411055002934440299297, 8.146344418580692682987618376928, 8.564635655145774684766379214295, 9.313478676694928712128248966662, 9.492341932860479083191995464389, 9.876213824945739776814976696835, 10.03316412522753416286147133926, 10.61936807274272778021164034426