Properties

Label 650.2.c.b.649.1
Level $650$
Weight $2$
Character 650.649
Analytic conductor $5.190$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(649,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 650.649
Dual form 650.2.c.b.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.00000i q^{3} +1.00000 q^{4} +2.00000i q^{6} -1.00000 q^{8} -1.00000 q^{9} -2.00000i q^{12} +(-3.00000 - 2.00000i) q^{13} +1.00000 q^{16} -6.00000i q^{17} +1.00000 q^{18} +2.00000i q^{24} +(3.00000 + 2.00000i) q^{26} -4.00000i q^{27} -6.00000 q^{29} -6.00000i q^{31} -1.00000 q^{32} +6.00000i q^{34} -1.00000 q^{36} +6.00000 q^{37} +(-4.00000 + 6.00000i) q^{39} +10.0000i q^{43} -12.0000 q^{47} -2.00000i q^{48} -7.00000 q^{49} -12.0000 q^{51} +(-3.00000 - 2.00000i) q^{52} +4.00000i q^{54} +6.00000 q^{58} -12.0000i q^{59} +10.0000 q^{61} +6.00000i q^{62} +1.00000 q^{64} -12.0000 q^{67} -6.00000i q^{68} +6.00000i q^{71} +1.00000 q^{72} +6.00000 q^{73} -6.00000 q^{74} +(4.00000 - 6.00000i) q^{78} +8.00000 q^{79} -11.0000 q^{81} -12.0000 q^{83} -10.0000i q^{86} +12.0000i q^{87} -12.0000i q^{89} -12.0000 q^{93} +12.0000 q^{94} +2.00000i q^{96} +18.0000 q^{97} +7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 2 q^{9} - 6 q^{13} + 2 q^{16} + 2 q^{18} + 6 q^{26} - 12 q^{29} - 2 q^{32} - 2 q^{36} + 12 q^{37} - 8 q^{39} - 24 q^{47} - 14 q^{49} - 24 q^{51} - 6 q^{52} + 12 q^{58}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.00000i 1.15470i −0.816497 0.577350i \(-0.804087\pi\)
0.816497 0.577350i \(-0.195913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.00000i 0.816497i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 2.00000i 0.577350i
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 1.00000 0.235702
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 2.00000i 0.408248i
\(25\) 0 0
\(26\) 3.00000 + 2.00000i 0.588348 + 0.392232i
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 6.00000i 1.07763i −0.842424 0.538816i \(-0.818872\pi\)
0.842424 0.538816i \(-0.181128\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 6.00000i 1.02899i
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) −4.00000 + 6.00000i −0.640513 + 0.960769i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i 0.646997 + 0.762493i \(0.276025\pi\)
−0.646997 + 0.762493i \(0.723975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 2.00000i 0.288675i
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) −3.00000 2.00000i −0.416025 0.277350i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 4.00000i 0.544331i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 12.0000i 1.56227i −0.624364 0.781133i \(-0.714642\pi\)
0.624364 0.781133i \(-0.285358\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 6.00000i 0.762001i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000i 0.712069i 0.934473 + 0.356034i \(0.115871\pi\)
−0.934473 + 0.356034i \(0.884129\pi\)
\(72\) 1.00000 0.117851
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 4.00000 6.00000i 0.452911 0.679366i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.0000i 1.07833i
\(87\) 12.0000i 1.28654i
\(88\) 0 0
\(89\) 12.0000i 1.27200i −0.771690 0.635999i \(-0.780588\pi\)
0.771690 0.635999i \(-0.219412\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −12.0000 −1.24434
\(94\) 12.0000 1.23771
\(95\) 0 0
\(96\) 2.00000i 0.204124i
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 7.00000 0.707107
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 12.0000 1.18818
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 3.00000 + 2.00000i 0.294174 + 0.196116i
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000i 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 4.00000i 0.384900i
\(109\) 6.00000i 0.574696i −0.957826 0.287348i \(-0.907226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) 0 0
\(111\) 12.0000i 1.13899i
\(112\) 0 0
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 3.00000 + 2.00000i 0.277350 + 0.184900i
\(118\) 12.0000i 1.10469i
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) 6.00000i 0.538816i
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 20.0000 1.76090
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 6.00000i 0.514496i
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 24.0000i 2.02116i
\(142\) 6.00000i 0.503509i
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −6.00000 −0.496564
\(147\) 14.0000i 1.15470i
\(148\) 6.00000 0.493197
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) 18.0000i 1.46482i −0.680864 0.732410i \(-0.738396\pi\)
0.680864 0.732410i \(-0.261604\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) −4.00000 + 6.00000i −0.320256 + 0.480384i
\(157\) 4.00000i 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 11.0000 0.864242
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 10.0000i 0.762493i
\(173\) 24.0000i 1.82469i 0.409426 + 0.912343i \(0.365729\pi\)
−0.409426 + 0.912343i \(0.634271\pi\)
\(174\) 12.0000i 0.909718i
\(175\) 0 0
\(176\) 0 0
\(177\) −24.0000 −1.80395
\(178\) 12.0000i 0.899438i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 20.0000i 1.47844i
\(184\) 0 0
\(185\) 0 0
\(186\) 12.0000 0.879883
\(187\) 0 0
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 2.00000i 0.144338i
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) −18.0000 −1.29232
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 24.0000i 1.69283i
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) −12.0000 −0.840168
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) 0 0
\(208\) −3.00000 2.00000i −0.208013 0.138675i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) 6.00000i 0.410152i
\(215\) 0 0
\(216\) 4.00000i 0.272166i
\(217\) 0 0
\(218\) 6.00000i 0.406371i
\(219\) 12.0000i 0.810885i
\(220\) 0 0
\(221\) −12.0000 + 18.0000i −0.807207 + 1.21081i
\(222\) 12.0000i 0.805387i
\(223\) 12.0000 0.803579 0.401790 0.915732i \(-0.368388\pi\)
0.401790 + 0.915732i \(0.368388\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6.00000i 0.399114i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) −3.00000 2.00000i −0.196116 0.130744i
\(235\) 0 0
\(236\) 12.0000i 0.781133i
\(237\) 16.0000i 1.03931i
\(238\) 0 0
\(239\) 18.0000i 1.16432i 0.813073 + 0.582162i \(0.197793\pi\)
−0.813073 + 0.582162i \(0.802207\pi\)
\(240\) 0 0
\(241\) 24.0000i 1.54598i −0.634421 0.772988i \(-0.718761\pi\)
0.634421 0.772988i \(-0.281239\pi\)
\(242\) −11.0000 −0.707107
\(243\) 10.0000i 0.641500i
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 6.00000i 0.381000i
\(249\) 24.0000i 1.52094i
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 16.0000i 1.00393i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0000i 1.87135i −0.352865 0.935674i \(-0.614792\pi\)
0.352865 0.935674i \(-0.385208\pi\)
\(258\) −20.0000 −1.24515
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 24.0000i 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −24.0000 −1.46878
\(268\) −12.0000 −0.733017
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 6.00000i 0.364474i 0.983255 + 0.182237i \(0.0583338\pi\)
−0.983255 + 0.182237i \(0.941666\pi\)
\(272\) 6.00000i 0.363803i
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) −4.00000 −0.239904
\(279\) 6.00000i 0.359211i
\(280\) 0 0
\(281\) 12.0000i 0.715860i −0.933748 0.357930i \(-0.883483\pi\)
0.933748 0.357930i \(-0.116517\pi\)
\(282\) 24.0000i 1.42918i
\(283\) 14.0000i 0.832214i 0.909316 + 0.416107i \(0.136606\pi\)
−0.909316 + 0.416107i \(0.863394\pi\)
\(284\) 6.00000i 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 36.0000i 2.11036i
\(292\) 6.00000 0.351123
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 14.0000i 0.816497i
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 18.0000i 1.03578i
\(303\) 12.0000i 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) 6.00000i 0.342997i
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 4.00000 6.00000i 0.226455 0.339683i
\(313\) 10.0000i 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) 4.00000i 0.225733i
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) −12.0000 −0.663602
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 12.0000i 0.659580i 0.944054 + 0.329790i \(0.106978\pi\)
−0.944054 + 0.329790i \(0.893022\pi\)
\(332\) −12.0000 −0.658586
\(333\) −6.00000 −0.328798
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) 0 0
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) −5.00000 12.0000i −0.271964 0.652714i
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 10.0000i 0.539164i
\(345\) 0 0
\(346\) 24.0000i 1.29025i
\(347\) 6.00000i 0.322097i −0.986947 0.161048i \(-0.948512\pi\)
0.986947 0.161048i \(-0.0514875\pi\)
\(348\) 12.0000i 0.643268i
\(349\) 30.0000i 1.60586i 0.596071 + 0.802932i \(0.296728\pi\)
−0.596071 + 0.802932i \(0.703272\pi\)
\(350\) 0 0
\(351\) −8.00000 + 12.0000i −0.427008 + 0.640513i
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 24.0000 1.27559
\(355\) 0 0
\(356\) 12.0000i 0.635999i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000i 0.316668i −0.987386 0.158334i \(-0.949388\pi\)
0.987386 0.158334i \(-0.0506123\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) −2.00000 −0.105118
\(363\) 22.0000i 1.15470i
\(364\) 0 0
\(365\) 0 0
\(366\) 20.0000i 1.04542i
\(367\) 28.0000i 1.46159i −0.682598 0.730794i \(-0.739150\pi\)
0.682598 0.730794i \(-0.260850\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −12.0000 −0.622171
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 18.0000 + 12.0000i 0.927047 + 0.618031i
\(378\) 0 0
\(379\) 24.0000i 1.23280i −0.787434 0.616399i \(-0.788591\pi\)
0.787434 0.616399i \(-0.211409\pi\)
\(380\) 0 0
\(381\) 32.0000 1.63941
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 2.00000i 0.102062i
\(385\) 0 0
\(386\) −18.0000 −0.916176
\(387\) 10.0000i 0.508329i
\(388\) 18.0000 0.913812
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.00000 0.353553
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) 0 0
\(397\) −30.0000 −1.50566 −0.752828 0.658217i \(-0.771311\pi\)
−0.752828 + 0.658217i \(0.771311\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000i 0.599251i 0.954057 + 0.299626i \(0.0968618\pi\)
−0.954057 + 0.299626i \(0.903138\pi\)
\(402\) 24.0000i 1.19701i
\(403\) −12.0000 + 18.0000i −0.597763 + 0.896644i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 12.0000 0.594089
\(409\) 12.0000i 0.593362i 0.954977 + 0.296681i \(0.0958798\pi\)
−0.954977 + 0.296681i \(0.904120\pi\)
\(410\) 0 0
\(411\) 36.0000i 1.77575i
\(412\) 4.00000i 0.197066i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 3.00000 + 2.00000i 0.147087 + 0.0980581i
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 30.0000i 1.46211i 0.682318 + 0.731055i \(0.260972\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) −4.00000 −0.194717
\(423\) 12.0000 0.583460
\(424\) 0 0
\(425\) 0 0
\(426\) −12.0000 −0.581402
\(427\) 0 0
\(428\) 6.00000i 0.290021i
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0000i 1.44505i 0.691345 + 0.722525i \(0.257018\pi\)
−0.691345 + 0.722525i \(0.742982\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000i 0.287348i
\(437\) 0 0
\(438\) 12.0000i 0.573382i
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 12.0000 18.0000i 0.570782 0.856173i
\(443\) 6.00000i 0.285069i −0.989790 0.142534i \(-0.954475\pi\)
0.989790 0.142534i \(-0.0455251\pi\)
\(444\) 12.0000i 0.569495i
\(445\) 0 0
\(446\) −12.0000 −0.568216
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) 12.0000i 0.566315i 0.959073 + 0.283158i \(0.0913819\pi\)
−0.959073 + 0.283158i \(0.908618\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 6.00000i 0.282216i
\(453\) −36.0000 −1.69143
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) 6.00000i 0.280362i
\(459\) −24.0000 −1.12022
\(460\) 0 0
\(461\) 30.0000i 1.39724i 0.715493 + 0.698620i \(0.246202\pi\)
−0.715493 + 0.698620i \(0.753798\pi\)
\(462\) 0 0
\(463\) 12.0000 0.557687 0.278844 0.960337i \(-0.410049\pi\)
0.278844 + 0.960337i \(0.410049\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 18.0000i 0.833834i
\(467\) 18.0000i 0.832941i 0.909149 + 0.416470i \(0.136733\pi\)
−0.909149 + 0.416470i \(0.863267\pi\)
\(468\) 3.00000 + 2.00000i 0.138675 + 0.0924500i
\(469\) 0 0
\(470\) 0 0
\(471\) −8.00000 −0.368621
\(472\) 12.0000i 0.552345i
\(473\) 0 0
\(474\) 16.0000i 0.734904i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 18.0000i 0.823301i
\(479\) 42.0000i 1.91903i 0.281659 + 0.959514i \(0.409115\pi\)
−0.281659 + 0.959514i \(0.590885\pi\)
\(480\) 0 0
\(481\) −18.0000 12.0000i −0.820729 0.547153i
\(482\) 24.0000i 1.09317i
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) 10.0000i 0.453609i
\(487\) 24.0000 1.08754 0.543772 0.839233i \(-0.316996\pi\)
0.543772 + 0.839233i \(0.316996\pi\)
\(488\) −10.0000 −0.452679
\(489\) 24.0000i 1.08532i
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 36.0000i 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) 6.00000i 0.269408i
\(497\) 0 0
\(498\) 24.0000i 1.07547i
\(499\) 12.0000i 0.537194i −0.963253 0.268597i \(-0.913440\pi\)
0.963253 0.268597i \(-0.0865599\pi\)
\(500\) 0 0
\(501\) 24.0000i 1.07224i
\(502\) 24.0000 1.07117
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 24.0000 10.0000i 1.06588 0.444116i
\(508\) 16.0000i 0.709885i
\(509\) 6.00000i 0.265945i 0.991120 + 0.132973i \(0.0424523\pi\)
−0.991120 + 0.132973i \(0.957548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 30.0000i 1.32324i
\(515\) 0 0
\(516\) 20.0000 0.880451
\(517\) 0 0
\(518\) 0 0
\(519\) 48.0000 2.10697
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) −6.00000 −0.262613
\(523\) 34.0000i 1.48672i 0.668894 + 0.743358i \(0.266768\pi\)
−0.668894 + 0.743358i \(0.733232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 24.0000i 1.04645i
\(527\) −36.0000 −1.56818
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) 0 0
\(534\) 24.0000 1.03858
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) −30.0000 −1.29339
\(539\) 0 0
\(540\) 0 0
\(541\) 18.0000i 0.773880i −0.922105 0.386940i \(-0.873532\pi\)
0.922105 0.386940i \(-0.126468\pi\)
\(542\) 6.00000i 0.257722i
\(543\) 4.00000i 0.171656i
\(544\) 6.00000i 0.257248i
\(545\) 0 0
\(546\) 0 0
\(547\) 10.0000i 0.427569i −0.976881 0.213785i \(-0.931421\pi\)
0.976881 0.213785i \(-0.0685791\pi\)
\(548\) 18.0000 0.768922
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 8.00000i 0.339887i
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 6.00000i 0.254000i
\(559\) 20.0000 30.0000i 0.845910 1.26886i
\(560\) 0 0
\(561\) 0 0
\(562\) 12.0000i 0.506189i
\(563\) 6.00000i 0.252870i −0.991975 0.126435i \(-0.959647\pi\)
0.991975 0.126435i \(-0.0403535\pi\)
\(564\) 24.0000i 1.01058i
\(565\) 0 0
\(566\) 14.0000i 0.588464i
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −0.0416667
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 19.0000 0.790296
\(579\) 36.0000i 1.49611i
\(580\) 0 0
\(581\) 0 0
\(582\) 36.0000i 1.49225i
\(583\) 0 0
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 14.0000i 0.577350i
\(589\) 0 0
\(590\) 0 0
\(591\) 12.0000i 0.493614i
\(592\) 6.00000 0.246598
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000i 0.245770i
\(597\) 32.0000i 1.30967i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 18.0000i 0.732410i
\(605\) 0 0
\(606\) 12.0000i 0.487467i
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.0000 + 24.0000i 1.45640 + 0.970936i
\(612\) 6.00000i 0.242536i
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 12.0000 0.484281
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) −8.00000 −0.321807
\(619\) 36.0000i 1.44696i −0.690344 0.723481i \(-0.742541\pi\)
0.690344 0.723481i \(-0.257459\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) −4.00000 + 6.00000i −0.160128 + 0.240192i
\(625\) 0 0
\(626\) 10.0000i 0.399680i
\(627\) 0 0
\(628\) 4.00000i 0.159617i
\(629\) 36.0000i 1.43541i
\(630\) 0 0
\(631\) 6.00000i 0.238856i 0.992843 + 0.119428i \(0.0381061\pi\)
−0.992843 + 0.119428i \(0.961894\pi\)
\(632\) −8.00000 −0.318223
\(633\) 8.00000i 0.317971i
\(634\) 18.0000 0.714871
\(635\) 0 0
\(636\) 0 0
\(637\) 21.0000 + 14.0000i 0.832050 + 0.554700i
\(638\) 0 0
\(639\) 6.00000i 0.237356i
\(640\) 0 0
\(641\) 6.00000 0.236986 0.118493 0.992955i \(-0.462194\pi\)
0.118493 + 0.992955i \(0.462194\pi\)
\(642\) 12.0000 0.473602
\(643\) −36.0000 −1.41970 −0.709851 0.704352i \(-0.751238\pi\)
−0.709851 + 0.704352i \(0.751238\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 11.0000 0.432121
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 36.0000i 1.40879i −0.709809 0.704394i \(-0.751219\pi\)
0.709809 0.704394i \(-0.248781\pi\)
\(654\) 12.0000 0.469237
\(655\) 0 0
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 42.0000i 1.63361i −0.576913 0.816805i \(-0.695743\pi\)
0.576913 0.816805i \(-0.304257\pi\)
\(662\) 12.0000i 0.466393i
\(663\) 36.0000 + 24.0000i 1.39812 + 0.932083i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 0 0
\(668\) 12.0000 0.464294
\(669\) 24.0000i 0.927894i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000i 1.00223i −0.865382 0.501113i \(-0.832924\pi\)
0.865382 0.501113i \(-0.167076\pi\)
\(674\) 22.0000i 0.847408i
\(675\) 0 0
\(676\) 5.00000 + 12.0000i 0.192308 + 0.461538i
\(677\) 12.0000i 0.461197i 0.973049 + 0.230599i \(0.0740685\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(678\) 12.0000 0.460857
\(679\) 0 0
\(680\) 0 0
\(681\) 24.0000i 0.919682i
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −12.0000 −0.457829
\(688\) 10.0000i 0.381246i
\(689\) 0 0
\(690\) 0 0
\(691\) 36.0000i 1.36950i −0.728776 0.684752i \(-0.759910\pi\)
0.728776 0.684752i \(-0.240090\pi\)
\(692\) 24.0000i 0.912343i
\(693\) 0 0
\(694\) 6.00000i 0.227757i
\(695\) 0 0
\(696\) 12.0000i 0.454859i
\(697\) 0 0
\(698\) 30.0000i 1.13552i
\(699\) −36.0000 −1.36165
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 8.00000 12.0000i 0.301941 0.452911i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) −24.0000 −0.901975
\(709\) 18.0000i 0.676004i 0.941145 + 0.338002i \(0.109751\pi\)
−0.941145 + 0.338002i \(0.890249\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 12.0000i 0.449719i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 36.0000 1.34444
\(718\) 6.00000i 0.223918i
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −19.0000 −0.707107
\(723\) −48.0000 −1.78514
\(724\) 2.00000 0.0743294
\(725\) 0 0
\(726\) 22.0000i 0.816497i
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 60.0000 2.21918
\(732\) 20.0000i 0.739221i
\(733\) 18.0000 0.664845 0.332423 0.943131i \(-0.392134\pi\)
0.332423 + 0.943131i \(0.392134\pi\)
\(734\) 28.0000i 1.03350i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 12.0000 0.439941
\(745\) 0 0
\(746\) 4.00000i 0.146450i
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −12.0000 −0.437595
\(753\) 48.0000i 1.74922i
\(754\) −18.0000 12.0000i −0.655521 0.437014i
\(755\) 0 0
\(756\) 0 0
\(757\) 16.0000i 0.581530i 0.956795 + 0.290765i \(0.0939098\pi\)
−0.956795 + 0.290765i \(0.906090\pi\)
\(758\) 24.0000i 0.871719i
\(759\) 0 0
\(760\) 0 0
\(761\) 12.0000i 0.435000i −0.976060 0.217500i \(-0.930210\pi\)
0.976060 0.217500i \(-0.0697902\pi\)
\(762\) −32.0000 −1.15924
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.0000 + 36.0000i −0.866590 + 1.29988i
\(768\) 2.00000i 0.0721688i
\(769\) 48.0000i 1.73092i −0.500974 0.865462i \(-0.667025\pi\)
0.500974 0.865462i \(-0.332975\pi\)
\(770\) 0 0
\(771\) −60.0000 −2.16085
\(772\) 18.0000 0.647834
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 10.0000i 0.359443i
\(775\) 0 0
\(776\) −18.0000 −0.646162
\(777\) 0 0
\(778\) 18.0000 0.645331
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 24.0000i 0.857690i
\(784\) −7.00000 −0.250000
\(785\) 0 0
\(786\) 0 0
\(787\) −36.0000 −1.28326 −0.641631 0.767014i \(-0.721742\pi\)
−0.641631 + 0.767014i \(0.721742\pi\)
\(788\) 6.00000 0.213741
\(789\) −48.0000 −1.70885
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −30.0000 20.0000i −1.06533 0.710221i
\(794\) 30.0000 1.06466
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) 48.0000i 1.70025i −0.526583 0.850124i \(-0.676527\pi\)
0.526583 0.850124i \(-0.323473\pi\)
\(798\) 0 0
\(799\) 72.0000i 2.54718i
\(800\) 0 0
\(801\) 12.0000i 0.423999i
\(802\) 12.0000i 0.423735i
\(803\) 0 0
\(804\) 24.0000i 0.846415i
\(805\) 0 0
\(806\) 12.0000 18.0000i 0.422682 0.634023i
\(807\) 60.0000i 2.11210i
\(808\) −6.00000 −0.211079
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 24.0000i 0.842754i 0.906886 + 0.421377i \(0.138453\pi\)
−0.906886 + 0.421377i \(0.861547\pi\)
\(812\) 0 0
\(813\) 12.0000 0.420858
\(814\) 0 0
\(815\) 0 0
\(816\) −12.0000 −0.420084
\(817\) 0 0
\(818\) 12.0000i 0.419570i
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000i 0.628204i −0.949389 0.314102i \(-0.898297\pi\)
0.949389 0.314102i \(-0.101703\pi\)
\(822\) 36.0000i 1.25564i
\(823\) 32.0000i 1.11545i −0.830026 0.557725i \(-0.811674\pi\)
0.830026 0.557725i \(-0.188326\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 16.0000 0.555034
\(832\) −3.00000 2.00000i −0.104006 0.0693375i
\(833\) 42.0000i 1.45521i
\(834\) 8.00000i 0.277017i
\(835\) 0 0
\(836\) 0 0
\(837\) −24.0000 −0.829561
\(838\) 12.0000 0.414533
\(839\) 30.0000i 1.03572i 0.855467 + 0.517858i \(0.173270\pi\)
−0.855467 + 0.517858i \(0.826730\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 30.0000i 1.03387i
\(843\) −24.0000 −0.826604
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) −12.0000 −0.412568
\(847\) 0 0
\(848\) 0 0
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 0 0
\(852\) 12.0000 0.411113
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6.00000i 0.205076i
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 30.0000i 1.02180i
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 4.00000i 0.136083i
\(865\) 0 0
\(866\) 2.00000i 0.0679628i
\(867\) 38.0000i 1.29055i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 36.0000 + 24.0000i 1.21981 + 0.813209i
\(872\) 6.00000i 0.203186i
\(873\) −18.0000 −0.609208
\(874\) 0 0
\(875\) 0 0
\(876\) 12.0000i 0.405442i
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) 8.00000 0.269987
\(879\) 36.0000i 1.21425i
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) −7.00000 −0.235702
\(883\) 2.00000i 0.0673054i 0.999434 + 0.0336527i \(0.0107140\pi\)
−0.999434 + 0.0336527i \(0.989286\pi\)
\(884\) −12.0000 + 18.0000i −0.403604 + 0.605406i
\(885\) 0 0
\(886\) 6.00000i 0.201574i
\(887\) 48.0000i 1.61168i −0.592132 0.805841i \(-0.701714\pi\)
0.592132 0.805841i \(-0.298286\pi\)
\(888\) 12.0000i 0.402694i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 12.0000 0.401790
\(893\) 0 0
\(894\) −12.0000 −0.401340
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 12.0000i 0.400445i
\(899\) 36.0000i 1.20067i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 6.00000i 0.199557i
\(905\) 0 0
\(906\) 36.0000 1.19602
\(907\) 10.0000i 0.332045i 0.986122 + 0.166022i \(0.0530924\pi\)
−0.986122 + 0.166022i \(0.946908\pi\)
\(908\) 12.0000 0.398234
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −18.0000 −0.595387
\(915\) 0 0
\(916\) 6.00000i 0.198246i
\(917\) 0 0
\(918\) 24.0000 0.792118
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 24.0000i 0.790827i
\(922\) 30.0000i 0.987997i
\(923\) 12.0000 18.0000i 0.394985 0.592477i
\(924\) 0 0
\(925\) 0 0
\(926\) −12.0000 −0.394344
\(927\) 4.00000i 0.131377i
\(928\) 6.00000 0.196960
\(929\) 36.0000i 1.18112i −0.806993 0.590561i \(-0.798907\pi\)
0.806993 0.590561i \(-0.201093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 18.0000i 0.589610i
\(933\) 48.0000i 1.57145i
\(934\) 18.0000i 0.588978i
\(935\) 0 0
\(936\) −3.00000 2.00000i −0.0980581 0.0653720i
\(937\) 38.0000i 1.24141i −0.784046 0.620703i \(-0.786847\pi\)
0.784046 0.620703i \(-0.213153\pi\)
\(938\) 0 0
\(939\) −20.0000 −0.652675
\(940\) 0 0
\(941\) 18.0000i 0.586783i 0.955992 + 0.293392i \(0.0947840\pi\)
−0.955992 + 0.293392i \(0.905216\pi\)
\(942\) 8.00000 0.260654
\(943\) 0 0
\(944\) 12.0000i 0.390567i
\(945\) 0 0
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 16.0000i 0.519656i
\(949\) −18.0000 12.0000i −0.584305 0.389536i
\(950\) 0 0
\(951\) 36.0000i 1.16738i
\(952\) 0 0
\(953\) 18.0000i 0.583077i 0.956559 + 0.291539i \(0.0941672\pi\)
−0.956559 + 0.291539i \(0.905833\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18.0000i 0.582162i
\(957\) 0 0
\(958\) 42.0000i 1.35696i
\(959\) 0 0
\(960\) 0 0
\(961\) −5.00000 −0.161290
\(962\) 18.0000 + 12.0000i 0.580343 + 0.386896i
\(963\) 6.00000i 0.193347i
\(964\) 24.0000i 0.772988i
\(965\) 0 0
\(966\) 0 0
\(967\) −12.0000 −0.385894 −0.192947 0.981209i \(-0.561805\pi\)
−0.192947 + 0.981209i \(0.561805\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 10.0000i 0.320750i
\(973\) 0 0
\(974\) −24.0000 −0.769010
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 24.0000i 0.767435i
\(979\) 0 0
\(980\) 0 0
\(981\) 6.00000i 0.191565i
\(982\) 12.0000 0.382935
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 36.0000i 1.14647i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 56.0000 1.77890 0.889449 0.457034i \(-0.151088\pi\)
0.889449 + 0.457034i \(0.151088\pi\)
\(992\) 6.00000i 0.190500i
\(993\) 24.0000 0.761617
\(994\) 0 0
\(995\) 0 0
\(996\) 24.0000i 0.760469i
\(997\) 28.0000i 0.886769i −0.896332 0.443384i \(-0.853778\pi\)
0.896332 0.443384i \(-0.146222\pi\)
\(998\) 12.0000i 0.379853i
\(999\) 24.0000i 0.759326i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.c.b.649.1 2
5.2 odd 4 650.2.d.a.51.1 2
5.3 odd 4 130.2.d.a.51.2 yes 2
5.4 even 2 650.2.c.c.649.2 2
13.12 even 2 650.2.c.c.649.1 2
15.8 even 4 1170.2.b.a.181.1 2
20.3 even 4 1040.2.k.a.961.2 2
65.3 odd 12 1690.2.l.b.1161.1 4
65.8 even 4 1690.2.a.d.1.1 1
65.12 odd 4 650.2.d.a.51.2 2
65.18 even 4 1690.2.a.i.1.1 1
65.23 odd 12 1690.2.l.b.1161.2 4
65.28 even 12 1690.2.e.b.191.1 2
65.33 even 12 1690.2.e.f.991.1 2
65.38 odd 4 130.2.d.a.51.1 2
65.43 odd 12 1690.2.l.b.361.1 4
65.47 even 4 8450.2.a.o.1.1 1
65.48 odd 12 1690.2.l.b.361.2 4
65.57 even 4 8450.2.a.b.1.1 1
65.58 even 12 1690.2.e.b.991.1 2
65.63 even 12 1690.2.e.f.191.1 2
65.64 even 2 inner 650.2.c.b.649.2 2
195.38 even 4 1170.2.b.a.181.2 2
260.103 even 4 1040.2.k.a.961.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.d.a.51.1 2 65.38 odd 4
130.2.d.a.51.2 yes 2 5.3 odd 4
650.2.c.b.649.1 2 1.1 even 1 trivial
650.2.c.b.649.2 2 65.64 even 2 inner
650.2.c.c.649.1 2 13.12 even 2
650.2.c.c.649.2 2 5.4 even 2
650.2.d.a.51.1 2 5.2 odd 4
650.2.d.a.51.2 2 65.12 odd 4
1040.2.k.a.961.1 2 260.103 even 4
1040.2.k.a.961.2 2 20.3 even 4
1170.2.b.a.181.1 2 15.8 even 4
1170.2.b.a.181.2 2 195.38 even 4
1690.2.a.d.1.1 1 65.8 even 4
1690.2.a.i.1.1 1 65.18 even 4
1690.2.e.b.191.1 2 65.28 even 12
1690.2.e.b.991.1 2 65.58 even 12
1690.2.e.f.191.1 2 65.63 even 12
1690.2.e.f.991.1 2 65.33 even 12
1690.2.l.b.361.1 4 65.43 odd 12
1690.2.l.b.361.2 4 65.48 odd 12
1690.2.l.b.1161.1 4 65.3 odd 12
1690.2.l.b.1161.2 4 65.23 odd 12
8450.2.a.b.1.1 1 65.57 even 4
8450.2.a.o.1.1 1 65.47 even 4