Properties

Label 1690.2.l.b.361.1
Level $1690$
Weight $2$
Character 1690.361
Analytic conductor $13.495$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(361,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,2,0,0,0,0,-2,2,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1690.361
Dual form 1690.2.l.b.1161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-1.00000 - 1.73205i) q^{3} +(0.500000 - 0.866025i) q^{4} -1.00000i q^{5} +(1.73205 + 1.00000i) q^{6} +1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{10} -2.00000 q^{12} +(-1.73205 + 1.00000i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.00000 - 5.19615i) q^{17} -1.00000i q^{18} +(-0.866025 - 0.500000i) q^{20} +(1.73205 - 1.00000i) q^{24} -1.00000 q^{25} -4.00000 q^{27} +(-3.00000 - 5.19615i) q^{29} +(1.00000 - 1.73205i) q^{30} +6.00000i q^{31} +(0.866025 + 0.500000i) q^{32} +6.00000i q^{34} +(0.500000 + 0.866025i) q^{36} +(5.19615 - 3.00000i) q^{37} +1.00000 q^{40} +(5.00000 - 8.66025i) q^{43} +(0.866025 + 0.500000i) q^{45} -12.0000i q^{47} +(-1.00000 + 1.73205i) q^{48} +(-3.50000 - 6.06218i) q^{49} +(0.866025 - 0.500000i) q^{50} -12.0000 q^{51} +(3.46410 - 2.00000i) q^{54} +(5.19615 + 3.00000i) q^{58} +(10.3923 + 6.00000i) q^{59} +2.00000i q^{60} +(-5.00000 + 8.66025i) q^{61} +(-3.00000 - 5.19615i) q^{62} -1.00000 q^{64} +(-10.3923 + 6.00000i) q^{67} +(-3.00000 - 5.19615i) q^{68} +(5.19615 + 3.00000i) q^{71} +(-0.866025 - 0.500000i) q^{72} -6.00000i q^{73} +(-3.00000 + 5.19615i) q^{74} +(1.00000 + 1.73205i) q^{75} -8.00000 q^{79} +(-0.866025 + 0.500000i) q^{80} +(5.50000 + 9.52628i) q^{81} +12.0000i q^{83} +(-5.19615 - 3.00000i) q^{85} +10.0000i q^{86} +(-6.00000 + 10.3923i) q^{87} +(-10.3923 + 6.00000i) q^{89} -1.00000 q^{90} +(10.3923 - 6.00000i) q^{93} +(6.00000 + 10.3923i) q^{94} -2.00000i q^{96} +(-15.5885 - 9.00000i) q^{97} +(6.06218 + 3.50000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 2 q^{4} - 2 q^{9} + 2 q^{10} - 8 q^{12} - 2 q^{16} + 12 q^{17} - 4 q^{25} - 16 q^{27} - 12 q^{29} + 4 q^{30} + 2 q^{36} + 4 q^{40} + 20 q^{43} - 4 q^{48} - 14 q^{49} - 48 q^{51} - 20 q^{61}+ \cdots + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −1.00000 1.73205i −0.577350 1.00000i −0.995782 0.0917517i \(-0.970753\pi\)
0.418432 0.908248i \(-0.362580\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) 1.73205 + 1.00000i 0.707107 + 0.408248i
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) −2.00000 −0.577350
\(13\) 0 0
\(14\) 0 0
\(15\) −1.73205 + 1.00000i −0.447214 + 0.258199i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.866025 0.500000i −0.193649 0.111803i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 1.73205 1.00000i 0.353553 0.204124i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 1.00000 1.73205i 0.182574 0.316228i
\(31\) 6.00000i 1.07763i 0.842424 + 0.538816i \(0.181128\pi\)
−0.842424 + 0.538816i \(0.818872\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 6.00000i 1.02899i
\(35\) 0 0
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 5.19615 3.00000i 0.854242 0.493197i −0.00783774 0.999969i \(-0.502495\pi\)
0.862080 + 0.506772i \(0.169162\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0 0
\(43\) 5.00000 8.66025i 0.762493 1.32068i −0.179069 0.983836i \(-0.557309\pi\)
0.941562 0.336840i \(-0.109358\pi\)
\(44\) 0 0
\(45\) 0.866025 + 0.500000i 0.129099 + 0.0745356i
\(46\) 0 0
\(47\) 12.0000i 1.75038i −0.483779 0.875190i \(-0.660736\pi\)
0.483779 0.875190i \(-0.339264\pi\)
\(48\) −1.00000 + 1.73205i −0.144338 + 0.250000i
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) 0.866025 0.500000i 0.122474 0.0707107i
\(51\) −12.0000 −1.68034
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 3.46410 2.00000i 0.471405 0.272166i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 5.19615 + 3.00000i 0.682288 + 0.393919i
\(59\) 10.3923 + 6.00000i 1.35296 + 0.781133i 0.988663 0.150148i \(-0.0479752\pi\)
0.364299 + 0.931282i \(0.381308\pi\)
\(60\) 2.00000i 0.258199i
\(61\) −5.00000 + 8.66025i −0.640184 + 1.10883i 0.345207 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170305i \(0.945525\pi\)
\(62\) −3.00000 5.19615i −0.381000 0.659912i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −10.3923 + 6.00000i −1.26962 + 0.733017i −0.974916 0.222571i \(-0.928555\pi\)
−0.294706 + 0.955588i \(0.595222\pi\)
\(68\) −3.00000 5.19615i −0.363803 0.630126i
\(69\) 0 0
\(70\) 0 0
\(71\) 5.19615 + 3.00000i 0.616670 + 0.356034i 0.775571 0.631260i \(-0.217462\pi\)
−0.158901 + 0.987294i \(0.550795\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) −3.00000 + 5.19615i −0.348743 + 0.604040i
\(75\) 1.00000 + 1.73205i 0.115470 + 0.200000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −0.866025 + 0.500000i −0.0968246 + 0.0559017i
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) −5.19615 3.00000i −0.563602 0.325396i
\(86\) 10.0000i 1.07833i
\(87\) −6.00000 + 10.3923i −0.643268 + 1.11417i
\(88\) 0 0
\(89\) −10.3923 + 6.00000i −1.10158 + 0.635999i −0.936636 0.350304i \(-0.886078\pi\)
−0.164946 + 0.986303i \(0.552745\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) 0 0
\(93\) 10.3923 6.00000i 1.07763 0.622171i
\(94\) 6.00000 + 10.3923i 0.618853 + 1.07188i
\(95\) 0 0
\(96\) 2.00000i 0.204124i
\(97\) −15.5885 9.00000i −1.58277 0.913812i −0.994453 0.105180i \(-0.966458\pi\)
−0.588315 0.808632i \(-0.700208\pi\)
\(98\) 6.06218 + 3.50000i 0.612372 + 0.353553i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 10.3923 6.00000i 1.02899 0.594089i
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 + 5.19615i 0.290021 + 0.502331i 0.973814 0.227345i \(-0.0730044\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(108\) −2.00000 + 3.46410i −0.192450 + 0.333333i
\(109\) 6.00000i 0.574696i −0.957826 0.287348i \(-0.907226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) 0 0
\(111\) −10.3923 6.00000i −0.986394 0.569495i
\(112\) 0 0
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) −1.00000 1.73205i −0.0912871 0.158114i
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 10.0000i 0.905357i
\(123\) 0 0
\(124\) 5.19615 + 3.00000i 0.466628 + 0.269408i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −8.00000 13.8564i −0.709885 1.22956i −0.964899 0.262620i \(-0.915413\pi\)
0.255014 0.966937i \(-0.417920\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −20.0000 −1.76090
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.00000 10.3923i 0.518321 0.897758i
\(135\) 4.00000i 0.344265i
\(136\) 5.19615 + 3.00000i 0.445566 + 0.257248i
\(137\) −15.5885 9.00000i −1.33181 0.768922i −0.346235 0.938148i \(-0.612540\pi\)
−0.985577 + 0.169226i \(0.945873\pi\)
\(138\) 0 0
\(139\) 2.00000 3.46410i 0.169638 0.293821i −0.768655 0.639664i \(-0.779074\pi\)
0.938293 + 0.345843i \(0.112407\pi\)
\(140\) 0 0
\(141\) −20.7846 + 12.0000i −1.75038 + 1.01058i
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −5.19615 + 3.00000i −0.431517 + 0.249136i
\(146\) 3.00000 + 5.19615i 0.248282 + 0.430037i
\(147\) −7.00000 + 12.1244i −0.577350 + 1.00000i
\(148\) 6.00000i 0.493197i
\(149\) −5.19615 3.00000i −0.425685 0.245770i 0.271821 0.962348i \(-0.412374\pi\)
−0.697507 + 0.716578i \(0.745707\pi\)
\(150\) −1.73205 1.00000i −0.141421 0.0816497i
\(151\) 18.0000i 1.46482i 0.680864 + 0.732410i \(0.261604\pi\)
−0.680864 + 0.732410i \(0.738396\pi\)
\(152\) 0 0
\(153\) 3.00000 + 5.19615i 0.242536 + 0.420084i
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 6.92820 4.00000i 0.551178 0.318223i
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 0 0
\(162\) −9.52628 5.50000i −0.748455 0.432121i
\(163\) 10.3923 + 6.00000i 0.813988 + 0.469956i 0.848339 0.529454i \(-0.177603\pi\)
−0.0343508 + 0.999410i \(0.510936\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) 10.3923 6.00000i 0.804181 0.464294i −0.0407502 0.999169i \(-0.512975\pi\)
0.844931 + 0.534875i \(0.179641\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) −5.00000 8.66025i −0.381246 0.660338i
\(173\) 12.0000 20.7846i 0.912343 1.58022i 0.101598 0.994826i \(-0.467605\pi\)
0.810745 0.585399i \(-0.199062\pi\)
\(174\) 12.0000i 0.909718i
\(175\) 0 0
\(176\) 0 0
\(177\) 24.0000i 1.80395i
\(178\) 6.00000 10.3923i 0.449719 0.778936i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0.866025 0.500000i 0.0645497 0.0372678i
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 20.0000 1.47844
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) −6.00000 + 10.3923i −0.439941 + 0.762001i
\(187\) 0 0
\(188\) −10.3923 6.00000i −0.757937 0.437595i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 1.00000 + 1.73205i 0.0721688 + 0.125000i
\(193\) −15.5885 + 9.00000i −1.12208 + 0.647834i −0.941932 0.335805i \(-0.890992\pi\)
−0.180150 + 0.983639i \(0.557658\pi\)
\(194\) 18.0000 1.29232
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 5.19615 3.00000i 0.370211 0.213741i −0.303340 0.952882i \(-0.598102\pi\)
0.673550 + 0.739141i \(0.264768\pi\)
\(198\) 0 0
\(199\) −8.00000 + 13.8564i −0.567105 + 0.982255i 0.429745 + 0.902950i \(0.358603\pi\)
−0.996850 + 0.0793045i \(0.974730\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 20.7846 + 12.0000i 1.46603 + 0.846415i
\(202\) 5.19615 + 3.00000i 0.365600 + 0.211079i
\(203\) 0 0
\(204\) −6.00000 + 10.3923i −0.420084 + 0.727607i
\(205\) 0 0
\(206\) 3.46410 2.00000i 0.241355 0.139347i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) 0 0
\(213\) 12.0000i 0.822226i
\(214\) −5.19615 3.00000i −0.355202 0.205076i
\(215\) −8.66025 5.00000i −0.590624 0.340997i
\(216\) 4.00000i 0.272166i
\(217\) 0 0
\(218\) 3.00000 + 5.19615i 0.203186 + 0.351928i
\(219\) −10.3923 + 6.00000i −0.702247 + 0.405442i
\(220\) 0 0
\(221\) 0 0
\(222\) 12.0000 0.805387
\(223\) −10.3923 + 6.00000i −0.695920 + 0.401790i −0.805826 0.592152i \(-0.798278\pi\)
0.109906 + 0.993942i \(0.464945\pi\)
\(224\) 0 0
\(225\) 0.500000 0.866025i 0.0333333 0.0577350i
\(226\) 6.00000i 0.399114i
\(227\) −10.3923 6.00000i −0.689761 0.398234i 0.113761 0.993508i \(-0.463710\pi\)
−0.803523 + 0.595274i \(0.797043\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.19615 3.00000i 0.341144 0.196960i
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 10.3923 6.00000i 0.676481 0.390567i
\(237\) 8.00000 + 13.8564i 0.519656 + 0.900070i
\(238\) 0 0
\(239\) 18.0000i 1.16432i 0.813073 + 0.582162i \(0.197793\pi\)
−0.813073 + 0.582162i \(0.802207\pi\)
\(240\) 1.73205 + 1.00000i 0.111803 + 0.0645497i
\(241\) −20.7846 12.0000i −1.33885 0.772988i −0.352217 0.935918i \(-0.614572\pi\)
−0.986638 + 0.162930i \(0.947905\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 5.00000 8.66025i 0.320750 0.555556i
\(244\) 5.00000 + 8.66025i 0.320092 + 0.554416i
\(245\) −6.06218 + 3.50000i −0.387298 + 0.223607i
\(246\) 0 0
\(247\) 0 0
\(248\) −6.00000 −0.381000
\(249\) 20.7846 12.0000i 1.31717 0.760469i
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) 12.0000 20.7846i 0.757433 1.31191i −0.186722 0.982413i \(-0.559786\pi\)
0.944156 0.329500i \(-0.106880\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 13.8564 + 8.00000i 0.869428 + 0.501965i
\(255\) 12.0000i 0.751469i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 15.0000 + 25.9808i 0.935674 + 1.62064i 0.773427 + 0.633885i \(0.218541\pi\)
0.162247 + 0.986750i \(0.448126\pi\)
\(258\) 17.3205 10.0000i 1.07833 0.622573i
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 20.7846 + 12.0000i 1.27200 + 0.734388i
\(268\) 12.0000i 0.733017i
\(269\) 15.0000 25.9808i 0.914566 1.58408i 0.107031 0.994256i \(-0.465866\pi\)
0.807535 0.589819i \(-0.200801\pi\)
\(270\) −2.00000 3.46410i −0.121716 0.210819i
\(271\) −5.19615 + 3.00000i −0.315644 + 0.182237i −0.649449 0.760405i \(-0.725000\pi\)
0.333805 + 0.942642i \(0.391667\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) −4.00000 + 6.92820i −0.240337 + 0.416275i −0.960810 0.277207i \(-0.910591\pi\)
0.720473 + 0.693482i \(0.243925\pi\)
\(278\) 4.00000i 0.239904i
\(279\) −5.19615 3.00000i −0.311086 0.179605i
\(280\) 0 0
\(281\) 12.0000i 0.715860i 0.933748 + 0.357930i \(0.116517\pi\)
−0.933748 + 0.357930i \(0.883483\pi\)
\(282\) 12.0000 20.7846i 0.714590 1.23771i
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 5.19615 3.00000i 0.308335 0.178017i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.866025 + 0.500000i −0.0510310 + 0.0294628i
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 3.00000 5.19615i 0.176166 0.305129i
\(291\) 36.0000i 2.11036i
\(292\) −5.19615 3.00000i −0.304082 0.175562i
\(293\) −15.5885 9.00000i −0.910687 0.525786i −0.0300351 0.999549i \(-0.509562\pi\)
−0.880652 + 0.473763i \(0.842895\pi\)
\(294\) 14.0000i 0.816497i
\(295\) 6.00000 10.3923i 0.349334 0.605063i
\(296\) 3.00000 + 5.19615i 0.174371 + 0.302020i
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 2.00000 0.115470
\(301\) 0 0
\(302\) −9.00000 15.5885i −0.517892 0.897015i
\(303\) −6.00000 + 10.3923i −0.344691 + 0.597022i
\(304\) 0 0
\(305\) 8.66025 + 5.00000i 0.495885 + 0.286299i
\(306\) −5.19615 3.00000i −0.297044 0.171499i
\(307\) 12.0000i 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 0 0
\(309\) 4.00000 + 6.92820i 0.227552 + 0.394132i
\(310\) −5.19615 + 3.00000i −0.295122 + 0.170389i
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 3.46410 2.00000i 0.195491 0.112867i
\(315\) 0 0
\(316\) −4.00000 + 6.92820i −0.225018 + 0.389742i
\(317\) 18.0000i 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000i 0.0559017i
\(321\) 6.00000 10.3923i 0.334887 0.580042i
\(322\) 0 0
\(323\) 0 0
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) −10.3923 + 6.00000i −0.574696 + 0.331801i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.3923 + 6.00000i 0.571213 + 0.329790i 0.757634 0.652680i \(-0.226355\pi\)
−0.186421 + 0.982470i \(0.559689\pi\)
\(332\) 10.3923 + 6.00000i 0.570352 + 0.329293i
\(333\) 6.00000i 0.328798i
\(334\) −6.00000 + 10.3923i −0.328305 + 0.568642i
\(335\) 6.00000 + 10.3923i 0.327815 + 0.567792i
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) −5.19615 + 3.00000i −0.281801 + 0.162698i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 8.66025 + 5.00000i 0.466930 + 0.269582i
\(345\) 0 0
\(346\) 24.0000i 1.29025i
\(347\) 3.00000 5.19615i 0.161048 0.278944i −0.774197 0.632945i \(-0.781846\pi\)
0.935245 + 0.354001i \(0.115179\pi\)
\(348\) 6.00000 + 10.3923i 0.321634 + 0.557086i
\(349\) 25.9808 15.0000i 1.39072 0.802932i 0.397324 0.917679i \(-0.369939\pi\)
0.993395 + 0.114747i \(0.0366057\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.19615 + 3.00000i −0.276563 + 0.159674i −0.631867 0.775077i \(-0.717711\pi\)
0.355303 + 0.934751i \(0.384378\pi\)
\(354\) 12.0000 + 20.7846i 0.637793 + 1.10469i
\(355\) 3.00000 5.19615i 0.159223 0.275783i
\(356\) 12.0000i 0.635999i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000i 0.316668i −0.987386 0.158334i \(-0.949388\pi\)
0.987386 0.158334i \(-0.0506123\pi\)
\(360\) −0.500000 + 0.866025i −0.0263523 + 0.0456435i
\(361\) −9.50000 16.4545i −0.500000 0.866025i
\(362\) −1.73205 + 1.00000i −0.0910346 + 0.0525588i
\(363\) 22.0000 1.15470
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) −17.3205 + 10.0000i −0.905357 + 0.522708i
\(367\) 14.0000 + 24.2487i 0.730794 + 1.26577i 0.956544 + 0.291587i \(0.0941834\pi\)
−0.225750 + 0.974185i \(0.572483\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 5.19615 + 3.00000i 0.270135 + 0.155963i
\(371\) 0 0
\(372\) 12.0000i 0.622171i
\(373\) −2.00000 + 3.46410i −0.103556 + 0.179364i −0.913147 0.407630i \(-0.866355\pi\)
0.809591 + 0.586994i \(0.199689\pi\)
\(374\) 0 0
\(375\) 1.73205 1.00000i 0.0894427 0.0516398i
\(376\) 12.0000 0.618853
\(377\) 0 0
\(378\) 0 0
\(379\) −20.7846 + 12.0000i −1.06763 + 0.616399i −0.927534 0.373739i \(-0.878076\pi\)
−0.140100 + 0.990137i \(0.544742\pi\)
\(380\) 0 0
\(381\) −16.0000 + 27.7128i −0.819705 + 1.41977i
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) −1.73205 1.00000i −0.0883883 0.0510310i
\(385\) 0 0
\(386\) 9.00000 15.5885i 0.458088 0.793432i
\(387\) 5.00000 + 8.66025i 0.254164 + 0.440225i
\(388\) −15.5885 + 9.00000i −0.791384 + 0.456906i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 6.06218 3.50000i 0.306186 0.176777i
\(393\) 0 0
\(394\) −3.00000 + 5.19615i −0.151138 + 0.261778i
\(395\) 8.00000i 0.402524i
\(396\) 0 0
\(397\) 25.9808 + 15.0000i 1.30394 + 0.752828i 0.981077 0.193618i \(-0.0620223\pi\)
0.322860 + 0.946447i \(0.395356\pi\)
\(398\) 16.0000i 0.802008i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) −10.3923 + 6.00000i −0.518967 + 0.299626i −0.736512 0.676425i \(-0.763528\pi\)
0.217545 + 0.976050i \(0.430195\pi\)
\(402\) −24.0000 −1.19701
\(403\) 0 0
\(404\) −6.00000 −0.298511
\(405\) 9.52628 5.50000i 0.473365 0.273297i
\(406\) 0 0
\(407\) 0 0
\(408\) 12.0000i 0.594089i
\(409\) −10.3923 6.00000i −0.513866 0.296681i 0.220555 0.975375i \(-0.429213\pi\)
−0.734422 + 0.678694i \(0.762546\pi\)
\(410\) 0 0
\(411\) 36.0000i 1.77575i
\(412\) −2.00000 + 3.46410i −0.0985329 + 0.170664i
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) 30.0000i 1.46211i −0.682318 0.731055i \(-0.739028\pi\)
0.682318 0.731055i \(-0.260972\pi\)
\(422\) 3.46410 + 2.00000i 0.168630 + 0.0973585i
\(423\) 10.3923 + 6.00000i 0.505291 + 0.291730i
\(424\) 0 0
\(425\) −3.00000 + 5.19615i −0.145521 + 0.252050i
\(426\) 6.00000 + 10.3923i 0.290701 + 0.503509i
\(427\) 0 0
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 10.0000 0.482243
\(431\) −25.9808 + 15.0000i −1.25145 + 0.722525i −0.971397 0.237460i \(-0.923685\pi\)
−0.280052 + 0.959985i \(0.590352\pi\)
\(432\) 2.00000 + 3.46410i 0.0962250 + 0.166667i
\(433\) 1.00000 1.73205i 0.0480569 0.0832370i −0.840996 0.541041i \(-0.818030\pi\)
0.889053 + 0.457804i \(0.151364\pi\)
\(434\) 0 0
\(435\) 10.3923 + 6.00000i 0.498273 + 0.287678i
\(436\) −5.19615 3.00000i −0.248851 0.143674i
\(437\) 0 0
\(438\) 6.00000 10.3923i 0.286691 0.496564i
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 6.00000 0.285069 0.142534 0.989790i \(-0.454475\pi\)
0.142534 + 0.989790i \(0.454475\pi\)
\(444\) −10.3923 + 6.00000i −0.493197 + 0.284747i
\(445\) 6.00000 + 10.3923i 0.284427 + 0.492642i
\(446\) 6.00000 10.3923i 0.284108 0.492090i
\(447\) 12.0000i 0.567581i
\(448\) 0 0
\(449\) −10.3923 6.00000i −0.490443 0.283158i 0.234315 0.972161i \(-0.424715\pi\)
−0.724758 + 0.689003i \(0.758049\pi\)
\(450\) 1.00000i 0.0471405i
\(451\) 0 0
\(452\) 3.00000 + 5.19615i 0.141108 + 0.244406i
\(453\) 31.1769 18.0000i 1.46482 0.845714i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 15.5885 9.00000i 0.729197 0.421002i −0.0889312 0.996038i \(-0.528345\pi\)
0.818128 + 0.575036i \(0.195012\pi\)
\(458\) 3.00000 + 5.19615i 0.140181 + 0.242800i
\(459\) −12.0000 + 20.7846i −0.560112 + 0.970143i
\(460\) 0 0
\(461\) 25.9808 + 15.0000i 1.21004 + 0.698620i 0.962769 0.270326i \(-0.0871313\pi\)
0.247276 + 0.968945i \(0.420465\pi\)
\(462\) 0 0
\(463\) 12.0000i 0.557687i −0.960337 0.278844i \(-0.910049\pi\)
0.960337 0.278844i \(-0.0899511\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) −6.00000 10.3923i −0.278243 0.481932i
\(466\) −15.5885 + 9.00000i −0.722121 + 0.416917i
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 10.3923 6.00000i 0.479361 0.276759i
\(471\) 4.00000 + 6.92820i 0.184310 + 0.319235i
\(472\) −6.00000 + 10.3923i −0.276172 + 0.478345i
\(473\) 0 0
\(474\) −13.8564 8.00000i −0.636446 0.367452i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −9.00000 15.5885i −0.411650 0.712999i
\(479\) 36.3731 21.0000i 1.66193 0.959514i 0.690134 0.723681i \(-0.257551\pi\)
0.971794 0.235833i \(-0.0757819\pi\)
\(480\) −2.00000 −0.0912871
\(481\) 0 0
\(482\) 24.0000 1.09317
\(483\) 0 0
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) −9.00000 + 15.5885i −0.408669 + 0.707835i
\(486\) 10.0000i 0.453609i
\(487\) −20.7846 12.0000i −0.941841 0.543772i −0.0513038 0.998683i \(-0.516338\pi\)
−0.890537 + 0.454911i \(0.849671\pi\)
\(488\) −8.66025 5.00000i −0.392031 0.226339i
\(489\) 24.0000i 1.08532i
\(490\) 3.50000 6.06218i 0.158114 0.273861i
\(491\) 6.00000 + 10.3923i 0.270776 + 0.468998i 0.969061 0.246822i \(-0.0793863\pi\)
−0.698285 + 0.715820i \(0.746053\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) 0 0
\(495\) 0 0
\(496\) 5.19615 3.00000i 0.233314 0.134704i
\(497\) 0 0
\(498\) −12.0000 + 20.7846i −0.537733 + 0.931381i
\(499\) 12.0000i 0.537194i −0.963253 0.268597i \(-0.913440\pi\)
0.963253 0.268597i \(-0.0865599\pi\)
\(500\) 0.866025 + 0.500000i 0.0387298 + 0.0223607i
\(501\) −20.7846 12.0000i −0.928588 0.536120i
\(502\) 24.0000i 1.07117i
\(503\) 6.00000 10.3923i 0.267527 0.463370i −0.700696 0.713460i \(-0.747127\pi\)
0.968223 + 0.250090i \(0.0804603\pi\)
\(504\) 0 0
\(505\) −5.19615 + 3.00000i −0.231226 + 0.133498i
\(506\) 0 0
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) 5.19615 3.00000i 0.230315 0.132973i −0.380402 0.924821i \(-0.624214\pi\)
0.610718 + 0.791849i \(0.290881\pi\)
\(510\) −6.00000 10.3923i −0.265684 0.460179i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −25.9808 15.0000i −1.14596 0.661622i
\(515\) 4.00000i 0.176261i
\(516\) −10.0000 + 17.3205i −0.440225 + 0.762493i
\(517\) 0 0
\(518\) 0 0
\(519\) −48.0000 −2.10697
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) −5.19615 + 3.00000i −0.227429 + 0.131306i
\(523\) 17.0000 + 29.4449i 0.743358 + 1.28753i 0.950958 + 0.309320i \(0.100101\pi\)
−0.207600 + 0.978214i \(0.566565\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 20.7846 + 12.0000i 0.906252 + 0.523225i
\(527\) 31.1769 + 18.0000i 1.35809 + 0.784092i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) −10.3923 + 6.00000i −0.450988 + 0.260378i
\(532\) 0 0
\(533\) 0 0
\(534\) −24.0000 −1.03858
\(535\) 5.19615 3.00000i 0.224649 0.129701i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) 0 0
\(538\) 30.0000i 1.29339i
\(539\) 0 0
\(540\) 3.46410 + 2.00000i 0.149071 + 0.0860663i
\(541\) 18.0000i 0.773880i 0.922105 + 0.386940i \(0.126468\pi\)
−0.922105 + 0.386940i \(0.873532\pi\)
\(542\) 3.00000 5.19615i 0.128861 0.223194i
\(543\) −2.00000 3.46410i −0.0858282 0.148659i
\(544\) 5.19615 3.00000i 0.222783 0.128624i
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) −10.0000 −0.427569 −0.213785 0.976881i \(-0.568579\pi\)
−0.213785 + 0.976881i \(0.568579\pi\)
\(548\) −15.5885 + 9.00000i −0.665906 + 0.384461i
\(549\) −5.00000 8.66025i −0.213395 0.369611i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 8.00000i 0.339887i
\(555\) −6.00000 + 10.3923i −0.254686 + 0.441129i
\(556\) −2.00000 3.46410i −0.0848189 0.146911i
\(557\) 15.5885 9.00000i 0.660504 0.381342i −0.131965 0.991254i \(-0.542129\pi\)
0.792469 + 0.609912i \(0.208795\pi\)
\(558\) 6.00000 0.254000
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −6.00000 10.3923i −0.253095 0.438373i
\(563\) −3.00000 + 5.19615i −0.126435 + 0.218992i −0.922293 0.386492i \(-0.873687\pi\)
0.795858 + 0.605483i \(0.207020\pi\)
\(564\) 24.0000i 1.01058i
\(565\) 5.19615 + 3.00000i 0.218604 + 0.126211i
\(566\) −12.1244 7.00000i −0.509625 0.294232i
\(567\) 0 0
\(568\) −3.00000 + 5.19615i −0.125877 + 0.218026i
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 18.0000i 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) 16.4545 + 9.50000i 0.684416 + 0.395148i
\(579\) 31.1769 + 18.0000i 1.29567 + 0.748054i
\(580\) 6.00000i 0.249136i
\(581\) 0 0
\(582\) −18.0000 31.1769i −0.746124 1.29232i
\(583\) 0 0
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) 31.1769 18.0000i 1.28681 0.742940i 0.308725 0.951151i \(-0.400098\pi\)
0.978084 + 0.208212i \(0.0667643\pi\)
\(588\) 7.00000 + 12.1244i 0.288675 + 0.500000i
\(589\) 0 0
\(590\) 12.0000i 0.494032i
\(591\) −10.3923 6.00000i −0.427482 0.246807i
\(592\) −5.19615 3.00000i −0.213561 0.123299i
\(593\) 18.0000i 0.739171i −0.929197 0.369586i \(-0.879500\pi\)
0.929197 0.369586i \(-0.120500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.19615 + 3.00000i −0.212843 + 0.122885i
\(597\) 32.0000 1.30967
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −1.73205 + 1.00000i −0.0707107 + 0.0408248i
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 12.0000i 0.488678i
\(604\) 15.5885 + 9.00000i 0.634285 + 0.366205i
\(605\) 9.52628 + 5.50000i 0.387298 + 0.223607i
\(606\) 12.0000i 0.487467i
\(607\) −16.0000 + 27.7128i −0.649420 + 1.12483i 0.333842 + 0.942629i \(0.391655\pi\)
−0.983262 + 0.182199i \(0.941678\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) 0 0
\(612\) 6.00000 0.242536
\(613\) −5.19615 + 3.00000i −0.209871 + 0.121169i −0.601251 0.799060i \(-0.705331\pi\)
0.391381 + 0.920229i \(0.371998\pi\)
\(614\) 6.00000 + 10.3923i 0.242140 + 0.419399i
\(615\) 0 0
\(616\) 0 0
\(617\) 5.19615 + 3.00000i 0.209189 + 0.120775i 0.600935 0.799298i \(-0.294795\pi\)
−0.391745 + 0.920074i \(0.628129\pi\)
\(618\) −6.92820 4.00000i −0.278693 0.160904i
\(619\) 36.0000i 1.44696i −0.690344 0.723481i \(-0.742541\pi\)
0.690344 0.723481i \(-0.257459\pi\)
\(620\) 3.00000 5.19615i 0.120483 0.208683i
\(621\) 0 0
\(622\) −20.7846 + 12.0000i −0.833387 + 0.481156i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −8.66025 + 5.00000i −0.346133 + 0.199840i
\(627\) 0 0
\(628\) −2.00000 + 3.46410i −0.0798087 + 0.138233i
\(629\) 36.0000i 1.43541i
\(630\) 0 0
\(631\) 5.19615 + 3.00000i 0.206856 + 0.119428i 0.599849 0.800113i \(-0.295227\pi\)
−0.392994 + 0.919541i \(0.628561\pi\)
\(632\) 8.00000i 0.318223i
\(633\) −4.00000 + 6.92820i −0.158986 + 0.275371i
\(634\) 9.00000 + 15.5885i 0.357436 + 0.619097i
\(635\) −13.8564 + 8.00000i −0.549875 + 0.317470i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.19615 + 3.00000i −0.205557 + 0.118678i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) −3.00000 + 5.19615i −0.118493 + 0.205236i −0.919171 0.393860i \(-0.871140\pi\)
0.800678 + 0.599095i \(0.204473\pi\)
\(642\) 12.0000i 0.473602i
\(643\) −31.1769 18.0000i −1.22950 0.709851i −0.262573 0.964912i \(-0.584571\pi\)
−0.966925 + 0.255062i \(0.917904\pi\)
\(644\) 0 0
\(645\) 20.0000i 0.787499i
\(646\) 0 0
\(647\) −6.00000 10.3923i −0.235884 0.408564i 0.723645 0.690172i \(-0.242465\pi\)
−0.959529 + 0.281609i \(0.909132\pi\)
\(648\) −9.52628 + 5.50000i −0.374228 + 0.216060i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 10.3923 6.00000i 0.406994 0.234978i
\(653\) −18.0000 31.1769i −0.704394 1.22005i −0.966910 0.255119i \(-0.917885\pi\)
0.262515 0.964928i \(-0.415448\pi\)
\(654\) 6.00000 10.3923i 0.234619 0.406371i
\(655\) 0 0
\(656\) 0 0
\(657\) 5.19615 + 3.00000i 0.202721 + 0.117041i
\(658\) 0 0
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 0 0
\(661\) 36.3731 21.0000i 1.41475 0.816805i 0.418917 0.908024i \(-0.362410\pi\)
0.995831 + 0.0912190i \(0.0290763\pi\)
\(662\) −12.0000 −0.466393
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) −3.00000 5.19615i −0.116248 0.201347i
\(667\) 0 0
\(668\) 12.0000i 0.464294i
\(669\) 20.7846 + 12.0000i 0.803579 + 0.463947i
\(670\) −10.3923 6.00000i −0.401490 0.231800i
\(671\) 0 0
\(672\) 0 0
\(673\) −13.0000 22.5167i −0.501113 0.867953i −0.999999 0.00128586i \(-0.999591\pi\)
0.498886 0.866668i \(-0.333743\pi\)
\(674\) −19.0526 + 11.0000i −0.733877 + 0.423704i
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) −10.3923 + 6.00000i −0.399114 + 0.230429i
\(679\) 0 0
\(680\) 3.00000 5.19615i 0.115045 0.199263i
\(681\) 24.0000i 0.919682i
\(682\) 0 0
\(683\) −10.3923 6.00000i −0.397650 0.229584i 0.287819 0.957685i \(-0.407070\pi\)
−0.685470 + 0.728101i \(0.740403\pi\)
\(684\) 0 0
\(685\) −9.00000 + 15.5885i −0.343872 + 0.595604i
\(686\) 0 0
\(687\) −10.3923 + 6.00000i −0.396491 + 0.228914i
\(688\) −10.0000 −0.381246
\(689\) 0 0
\(690\) 0 0
\(691\) 31.1769 18.0000i 1.18603 0.684752i 0.228625 0.973515i \(-0.426577\pi\)
0.957401 + 0.288762i \(0.0932437\pi\)
\(692\) −12.0000 20.7846i −0.456172 0.790112i
\(693\) 0 0
\(694\) 6.00000i 0.227757i
\(695\) −3.46410 2.00000i −0.131401 0.0758643i
\(696\) −10.3923 6.00000i −0.393919 0.227429i
\(697\) 0 0
\(698\) −15.0000 + 25.9808i −0.567758 + 0.983386i
\(699\) −18.0000 31.1769i −0.680823 1.17922i
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 12.0000 + 20.7846i 0.451946 + 0.782794i
\(706\) 3.00000 5.19615i 0.112906 0.195560i
\(707\) 0 0
\(708\) −20.7846 12.0000i −0.781133 0.450988i
\(709\) −15.5885 9.00000i −0.585437 0.338002i 0.177854 0.984057i \(-0.443084\pi\)
−0.763291 + 0.646055i \(0.776418\pi\)
\(710\) 6.00000i 0.225176i
\(711\) 4.00000 6.92820i 0.150012 0.259828i
\(712\) −6.00000 10.3923i −0.224860 0.389468i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 31.1769 18.0000i 1.16432 0.672222i
\(718\) 3.00000 + 5.19615i 0.111959 + 0.193919i
\(719\) 24.0000 41.5692i 0.895049 1.55027i 0.0613050 0.998119i \(-0.480474\pi\)
0.833744 0.552151i \(-0.186193\pi\)
\(720\) 1.00000i 0.0372678i
\(721\) 0 0
\(722\) 16.4545 + 9.50000i 0.612372 + 0.353553i
\(723\) 48.0000i 1.78514i
\(724\) 1.00000 1.73205i 0.0371647 0.0643712i
\(725\) 3.00000 + 5.19615i 0.111417 + 0.192980i
\(726\) −19.0526 + 11.0000i −0.707107 + 0.408248i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 5.19615 3.00000i 0.192318 0.111035i
\(731\) −30.0000 51.9615i −1.10959 1.92187i
\(732\) 10.0000 17.3205i 0.369611 0.640184i
\(733\) 18.0000i 0.664845i −0.943131 0.332423i \(-0.892134\pi\)
0.943131 0.332423i \(-0.107866\pi\)
\(734\) −24.2487 14.0000i −0.895036 0.516749i
\(735\) 12.1244 + 7.00000i 0.447214 + 0.258199i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) −20.7846 + 12.0000i −0.762513 + 0.440237i −0.830197 0.557470i \(-0.811772\pi\)
0.0676840 + 0.997707i \(0.478439\pi\)
\(744\) 6.00000 + 10.3923i 0.219971 + 0.381000i
\(745\) −3.00000 + 5.19615i −0.109911 + 0.190372i
\(746\) 4.00000i 0.146450i
\(747\) −10.3923 6.00000i −0.380235 0.219529i
\(748\) 0 0
\(749\) 0 0
\(750\) −1.00000 + 1.73205i −0.0365148 + 0.0632456i
\(751\) 20.0000 + 34.6410i 0.729810 + 1.26407i 0.956963 + 0.290209i \(0.0937250\pi\)
−0.227153 + 0.973859i \(0.572942\pi\)
\(752\) −10.3923 + 6.00000i −0.378968 + 0.218797i
\(753\) −48.0000 −1.74922
\(754\) 0 0
\(755\) 18.0000 0.655087
\(756\) 0 0
\(757\) −8.00000 13.8564i −0.290765 0.503620i 0.683226 0.730207i \(-0.260576\pi\)
−0.973991 + 0.226587i \(0.927243\pi\)
\(758\) 12.0000 20.7846i 0.435860 0.754931i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.3923 6.00000i −0.376721 0.217500i 0.299670 0.954043i \(-0.403123\pi\)
−0.676391 + 0.736543i \(0.736457\pi\)
\(762\) 32.0000i 1.15924i
\(763\) 0 0
\(764\) 0 0
\(765\) 5.19615 3.00000i 0.187867 0.108465i
\(766\) 0 0
\(767\) 0 0
\(768\) 2.00000 0.0721688
\(769\) −41.5692 + 24.0000i −1.49902 + 0.865462i −0.999999 0.00112544i \(-0.999642\pi\)
−0.499025 + 0.866588i \(0.666308\pi\)
\(770\) 0 0
\(771\) 30.0000 51.9615i 1.08042 1.87135i
\(772\) 18.0000i 0.647834i
\(773\) −5.19615 3.00000i −0.186893 0.107903i 0.403634 0.914920i \(-0.367747\pi\)
−0.590527 + 0.807018i \(0.701080\pi\)
\(774\) −8.66025 5.00000i −0.311286 0.179721i
\(775\) 6.00000i 0.215526i
\(776\) 9.00000 15.5885i 0.323081 0.559593i
\(777\) 0 0
\(778\) −15.5885 + 9.00000i −0.558873 + 0.322666i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 12.0000 + 20.7846i 0.428845 + 0.742781i
\(784\) −3.50000 + 6.06218i −0.125000 + 0.216506i
\(785\) 4.00000i 0.142766i
\(786\) 0 0
\(787\) 31.1769 + 18.0000i 1.11134 + 0.641631i 0.939175 0.343438i \(-0.111592\pi\)
0.172162 + 0.985069i \(0.444925\pi\)
\(788\) 6.00000i 0.213741i
\(789\) −24.0000 + 41.5692i −0.854423 + 1.47990i
\(790\) −4.00000 6.92820i −0.142314 0.246494i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −30.0000 −1.06466
\(795\) 0 0
\(796\) 8.00000 + 13.8564i 0.283552 + 0.491127i
\(797\) 24.0000 41.5692i 0.850124 1.47246i −0.0309726 0.999520i \(-0.509860\pi\)
0.881096 0.472937i \(-0.156806\pi\)
\(798\) 0 0
\(799\) −62.3538 36.0000i −2.20592 1.27359i
\(800\) −0.866025 0.500000i −0.0306186 0.0176777i
\(801\) 12.0000i 0.423999i
\(802\) 6.00000 10.3923i 0.211867 0.366965i
\(803\) 0 0
\(804\) 20.7846 12.0000i 0.733017 0.423207i
\(805\) 0 0
\(806\) 0 0
\(807\) −60.0000 −2.11210
\(808\) 5.19615 3.00000i 0.182800 0.105540i
\(809\) −21.0000 36.3731i −0.738321 1.27881i −0.953251 0.302180i \(-0.902286\pi\)
0.214930 0.976629i \(-0.431048\pi\)
\(810\) −5.50000 + 9.52628i −0.193250 + 0.334719i
\(811\) 24.0000i 0.842754i −0.906886 0.421377i \(-0.861547\pi\)
0.906886 0.421377i \(-0.138453\pi\)
\(812\) 0 0
\(813\) 10.3923 + 6.00000i 0.364474 + 0.210429i
\(814\) 0 0
\(815\) 6.00000 10.3923i 0.210171 0.364027i
\(816\) 6.00000 + 10.3923i 0.210042 + 0.363803i
\(817\) 0 0
\(818\) 12.0000 0.419570
\(819\) 0 0
\(820\) 0 0
\(821\) 15.5885 9.00000i 0.544041 0.314102i −0.202674 0.979246i \(-0.564963\pi\)
0.746715 + 0.665144i \(0.231630\pi\)
\(822\) −18.0000 31.1769i −0.627822 1.08742i
\(823\) −16.0000 + 27.7128i −0.557725 + 0.966008i 0.439961 + 0.898017i \(0.354992\pi\)
−0.997686 + 0.0679910i \(0.978341\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) 1.00000 + 1.73205i 0.0347314 + 0.0601566i 0.882869 0.469620i \(-0.155609\pi\)
−0.848137 + 0.529777i \(0.822276\pi\)
\(830\) −10.3923 + 6.00000i −0.360722 + 0.208263i
\(831\) 16.0000 0.555034
\(832\) 0 0
\(833\) −42.0000 −1.45521
\(834\) 6.92820 4.00000i 0.239904 0.138509i
\(835\) −6.00000 10.3923i −0.207639 0.359641i
\(836\) 0 0
\(837\) 24.0000i 0.829561i
\(838\) 10.3923 + 6.00000i 0.358996 + 0.207267i
\(839\) −25.9808 15.0000i −0.896956 0.517858i −0.0207443 0.999785i \(-0.506604\pi\)
−0.876211 + 0.481927i \(0.839937\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 15.0000 + 25.9808i 0.516934 + 0.895356i
\(843\) 20.7846 12.0000i 0.715860 0.413302i
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −12.0000 −0.412568
\(847\) 0 0
\(848\) 0 0
\(849\) 14.0000 24.2487i 0.480479 0.832214i
\(850\) 6.00000i 0.205798i
\(851\) 0 0
\(852\) −10.3923 6.00000i −0.356034 0.205557i
\(853\) 6.00000i 0.205436i 0.994711 + 0.102718i \(0.0327539\pi\)
−0.994711 + 0.102718i \(0.967246\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5.19615 + 3.00000i −0.177601 + 0.102538i
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) −8.66025 + 5.00000i −0.295312 + 0.170499i
\(861\) 0 0
\(862\) 15.0000 25.9808i 0.510902 0.884908i
\(863\) 12.0000i 0.408485i 0.978920 + 0.204242i \(0.0654731\pi\)
−0.978920 + 0.204242i \(0.934527\pi\)
\(864\) −3.46410 2.00000i −0.117851 0.0680414i
\(865\) −20.7846 12.0000i −0.706698 0.408012i
\(866\) 2.00000i 0.0679628i
\(867\) −19.0000 + 32.9090i −0.645274 + 1.11765i
\(868\) 0 0
\(869\) 0 0
\(870\) −12.0000 −0.406838
\(871\) 0 0
\(872\) 6.00000 0.203186
\(873\) 15.5885 9.00000i 0.527589 0.304604i
\(874\) 0 0
\(875\) 0 0
\(876\) 12.0000i 0.405442i
\(877\) 15.5885 + 9.00000i 0.526385 + 0.303908i 0.739543 0.673109i \(-0.235042\pi\)
−0.213158 + 0.977018i \(0.568375\pi\)
\(878\) 6.92820 + 4.00000i 0.233816 + 0.134993i
\(879\) 36.0000i 1.21425i
\(880\) 0 0
\(881\) 15.0000 + 25.9808i 0.505363 + 0.875314i 0.999981 + 0.00620358i \(0.00197467\pi\)
−0.494618 + 0.869111i \(0.664692\pi\)
\(882\) −6.06218 + 3.50000i −0.204124 + 0.117851i
\(883\) −2.00000 −0.0673054 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) −5.19615 + 3.00000i −0.174568 + 0.100787i
\(887\) 24.0000 + 41.5692i 0.805841 + 1.39576i 0.915722 + 0.401813i \(0.131620\pi\)
−0.109881 + 0.993945i \(0.535047\pi\)
\(888\) 6.00000 10.3923i 0.201347 0.348743i
\(889\) 0 0
\(890\) −10.3923 6.00000i −0.348351 0.201120i
\(891\) 0 0
\(892\) 12.0000i 0.401790i
\(893\) 0 0
\(894\) −6.00000 10.3923i −0.200670 0.347571i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 12.0000 0.400445
\(899\) 31.1769 18.0000i 1.03981 0.600334i
\(900\) −0.500000 0.866025i −0.0166667 0.0288675i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −5.19615 3.00000i −0.172821 0.0997785i
\(905\) 2.00000i 0.0664822i
\(906\) −18.0000 + 31.1769i −0.598010 + 1.03578i
\(907\) −5.00000 8.66025i −0.166022 0.287559i 0.770996 0.636841i \(-0.219759\pi\)
−0.937018 + 0.349281i \(0.886426\pi\)
\(908\) −10.3923 + 6.00000i −0.344881 + 0.199117i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −9.00000 + 15.5885i −0.297694 + 0.515620i
\(915\) 20.0000i 0.661180i
\(916\) −5.19615 3.00000i −0.171686 0.0991228i
\(917\) 0 0
\(918\) 24.0000i 0.792118i
\(919\) −8.00000 + 13.8564i −0.263896 + 0.457081i −0.967274 0.253735i \(-0.918341\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(920\) 0 0
\(921\) −20.7846 + 12.0000i −0.684876 + 0.395413i
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) −5.19615 + 3.00000i −0.170848 + 0.0986394i
\(926\) 6.00000 + 10.3923i 0.197172 + 0.341512i
\(927\) 2.00000 3.46410i 0.0656886 0.113776i
\(928\) 6.00000i 0.196960i
\(929\) 31.1769 + 18.0000i 1.02288 + 0.590561i 0.914937 0.403596i \(-0.132240\pi\)
0.107944 + 0.994157i \(0.465573\pi\)
\(930\) 10.3923 + 6.00000i 0.340777 + 0.196748i
\(931\) 0 0
\(932\) 9.00000 15.5885i 0.294805 0.510617i
\(933\) −24.0000 41.5692i −0.785725 1.36092i
\(934\) −15.5885 + 9.00000i −0.510070 + 0.294489i
\(935\) 0 0
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) −10.0000 17.3205i −0.326338 0.565233i
\(940\) −6.00000 + 10.3923i −0.195698 + 0.338960i
\(941\) 18.0000i 0.586783i −0.955992 0.293392i \(-0.905216\pi\)
0.955992 0.293392i \(-0.0947840\pi\)
\(942\) −6.92820 4.00000i −0.225733 0.130327i
\(943\) 0 0
\(944\) 12.0000i 0.390567i
\(945\) 0 0
\(946\) 0 0
\(947\) −10.3923 + 6.00000i −0.337705 + 0.194974i −0.659256 0.751918i \(-0.729129\pi\)
0.321552 + 0.946892i \(0.395796\pi\)
\(948\) 16.0000 0.519656
\(949\) 0 0
\(950\) 0 0
\(951\) −31.1769 + 18.0000i −1.01098 + 0.583690i
\(952\) 0 0
\(953\) 9.00000 15.5885i 0.291539 0.504960i −0.682635 0.730759i \(-0.739166\pi\)
0.974174 + 0.225800i \(0.0724995\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 15.5885 + 9.00000i 0.504167 + 0.291081i
\(957\) 0 0
\(958\) −21.0000 + 36.3731i −0.678479 + 1.17516i
\(959\) 0 0
\(960\) 1.73205 1.00000i 0.0559017 0.0322749i
\(961\) −5.00000 −0.161290
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) −20.7846 + 12.0000i −0.669427 + 0.386494i
\(965\) 9.00000 + 15.5885i 0.289720 + 0.501810i
\(966\) 0 0
\(967\) 12.0000i 0.385894i −0.981209 0.192947i \(-0.938195\pi\)
0.981209 0.192947i \(-0.0618045\pi\)
\(968\) −9.52628 5.50000i −0.306186 0.176777i
\(969\) 0 0
\(970\) 18.0000i 0.577945i
\(971\) −18.0000 + 31.1769i −0.577647 + 1.00051i 0.418101 + 0.908401i \(0.362696\pi\)
−0.995748 + 0.0921142i \(0.970638\pi\)
\(972\) −5.00000 8.66025i −0.160375 0.277778i
\(973\) 0 0
\(974\) 24.0000 0.769010
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) −36.3731 + 21.0000i −1.16368 + 0.671850i −0.952183 0.305530i \(-0.901167\pi\)
−0.211495 + 0.977379i \(0.567833\pi\)
\(978\) 12.0000 + 20.7846i 0.383718 + 0.664619i
\(979\) 0 0
\(980\) 7.00000i 0.223607i
\(981\) 5.19615 + 3.00000i 0.165900 + 0.0957826i
\(982\) −10.3923 6.00000i −0.331632 0.191468i
\(983\) 36.0000i 1.14822i −0.818778 0.574111i \(-0.805348\pi\)
0.818778 0.574111i \(-0.194652\pi\)
\(984\) 0 0
\(985\) −3.00000 5.19615i −0.0955879 0.165563i
\(986\) 31.1769 18.0000i 0.992875 0.573237i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −28.0000 48.4974i −0.889449 1.54057i −0.840528 0.541769i \(-0.817755\pi\)
−0.0489218 0.998803i \(-0.515578\pi\)
\(992\) −3.00000 + 5.19615i −0.0952501 + 0.164978i
\(993\) 24.0000i 0.761617i
\(994\) 0 0
\(995\) 13.8564 + 8.00000i 0.439278 + 0.253617i
\(996\) 24.0000i 0.760469i
\(997\) 14.0000 24.2487i 0.443384 0.767964i −0.554554 0.832148i \(-0.687111\pi\)
0.997938 + 0.0641836i \(0.0204443\pi\)
\(998\) 6.00000 + 10.3923i 0.189927 + 0.328963i
\(999\) −20.7846 + 12.0000i −0.657596 + 0.379663i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.l.b.361.1 4
13.2 odd 12 1690.2.a.d.1.1 1
13.3 even 3 130.2.d.a.51.1 2
13.4 even 6 inner 1690.2.l.b.1161.1 4
13.5 odd 4 1690.2.e.f.991.1 2
13.6 odd 12 1690.2.e.f.191.1 2
13.7 odd 12 1690.2.e.b.191.1 2
13.8 odd 4 1690.2.e.b.991.1 2
13.9 even 3 inner 1690.2.l.b.1161.2 4
13.10 even 6 130.2.d.a.51.2 yes 2
13.11 odd 12 1690.2.a.i.1.1 1
13.12 even 2 inner 1690.2.l.b.361.2 4
39.23 odd 6 1170.2.b.a.181.1 2
39.29 odd 6 1170.2.b.a.181.2 2
52.3 odd 6 1040.2.k.a.961.1 2
52.23 odd 6 1040.2.k.a.961.2 2
65.3 odd 12 650.2.c.b.649.2 2
65.23 odd 12 650.2.c.c.649.2 2
65.24 odd 12 8450.2.a.b.1.1 1
65.29 even 6 650.2.d.a.51.2 2
65.42 odd 12 650.2.c.c.649.1 2
65.49 even 6 650.2.d.a.51.1 2
65.54 odd 12 8450.2.a.o.1.1 1
65.62 odd 12 650.2.c.b.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.d.a.51.1 2 13.3 even 3
130.2.d.a.51.2 yes 2 13.10 even 6
650.2.c.b.649.1 2 65.62 odd 12
650.2.c.b.649.2 2 65.3 odd 12
650.2.c.c.649.1 2 65.42 odd 12
650.2.c.c.649.2 2 65.23 odd 12
650.2.d.a.51.1 2 65.49 even 6
650.2.d.a.51.2 2 65.29 even 6
1040.2.k.a.961.1 2 52.3 odd 6
1040.2.k.a.961.2 2 52.23 odd 6
1170.2.b.a.181.1 2 39.23 odd 6
1170.2.b.a.181.2 2 39.29 odd 6
1690.2.a.d.1.1 1 13.2 odd 12
1690.2.a.i.1.1 1 13.11 odd 12
1690.2.e.b.191.1 2 13.7 odd 12
1690.2.e.b.991.1 2 13.8 odd 4
1690.2.e.f.191.1 2 13.6 odd 12
1690.2.e.f.991.1 2 13.5 odd 4
1690.2.l.b.361.1 4 1.1 even 1 trivial
1690.2.l.b.361.2 4 13.12 even 2 inner
1690.2.l.b.1161.1 4 13.4 even 6 inner
1690.2.l.b.1161.2 4 13.9 even 3 inner
8450.2.a.b.1.1 1 65.24 odd 12
8450.2.a.o.1.1 1 65.54 odd 12