L(s) = 1 | − 2·3-s − 4-s + 4·7-s + 2·9-s − 2·11-s + 2·12-s − 4·13-s + 16-s + 2·17-s − 6·19-s − 8·21-s − 2·23-s − 6·27-s − 4·28-s + 2·31-s + 4·33-s − 2·36-s − 16·37-s + 8·39-s − 14·41-s − 2·43-s + 2·44-s + 20·47-s − 2·48-s − 2·49-s − 4·51-s + 4·52-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1/2·4-s + 1.51·7-s + 2/3·9-s − 0.603·11-s + 0.577·12-s − 1.10·13-s + 1/4·16-s + 0.485·17-s − 1.37·19-s − 1.74·21-s − 0.417·23-s − 1.15·27-s − 0.755·28-s + 0.359·31-s + 0.696·33-s − 1/3·36-s − 2.63·37-s + 1.28·39-s − 2.18·41-s − 0.304·43-s + 0.301·44-s + 2.91·47-s − 0.288·48-s − 2/7·49-s − 0.560·51-s + 0.554·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6420711061\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6420711061\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73303721600439363760297218680, −10.34325406579499916026999705077, −10.29361584125900938126828197301, −9.365453398881506248531166959616, −9.201596135118476114842273748172, −8.324908167818270776903304483087, −8.306710781180406186907575547740, −7.59393914082725413081402828852, −7.45007088155384587541795366382, −6.56709210887130089878145894380, −6.40158079755544011129432915351, −5.48047257650686113711776995125, −5.30055207529574521089037101435, −4.91395577804579494066940500857, −4.53586791952434054791300326720, −3.86546563358439182090976397331, −3.20614169614609321363323254999, −1.96998103694287451206770222518, −1.88824070217335622871656990854, −0.45910952408094615663762482309,
0.45910952408094615663762482309, 1.88824070217335622871656990854, 1.96998103694287451206770222518, 3.20614169614609321363323254999, 3.86546563358439182090976397331, 4.53586791952434054791300326720, 4.91395577804579494066940500857, 5.30055207529574521089037101435, 5.48047257650686113711776995125, 6.40158079755544011129432915351, 6.56709210887130089878145894380, 7.45007088155384587541795366382, 7.59393914082725413081402828852, 8.306710781180406186907575547740, 8.324908167818270776903304483087, 9.201596135118476114842273748172, 9.365453398881506248531166959616, 10.29361584125900938126828197301, 10.34325406579499916026999705077, 10.73303721600439363760297218680