Properties

Label 2.31.ac_c
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $1 - 2 x + 2 x^{2} - 62 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.209465137217$, $\pm0.709465137217$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{61})\)
Galois group:  $C_2^2$
Jacobians:  $114$
Isomorphism classes:  153

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $900$ $925200$ $882098100$ $855995040000$ $819885932572500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $30$ $962$ $29610$ $926878$ $28638150$ $887503682$ $27512979090$ $852889100158$ $26439608909070$ $819628286980802$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 114 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31^{4}}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{61})\).
Endomorphism algebra over $\overline{\F}_{31}$
The base change of $A$ to $\F_{31^{4}}$ is 1.923521.cmo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-61}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.c_c$2$(not in LMFDB)
2.31.a_aci$8$(not in LMFDB)
2.31.a_ci$8$(not in LMFDB)