Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 2 x^{2} - 62 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.209465137217$, $\pm0.709465137217$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{61})\) |
Galois group: | $C_2^2$ |
Jacobians: | $114$ |
Isomorphism classes: | 153 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $900$ | $925200$ | $882098100$ | $855995040000$ | $819885932572500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $962$ | $29610$ | $926878$ | $28638150$ | $887503682$ | $27512979090$ | $852889100158$ | $26439608909070$ | $819628286980802$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 114 curves (of which all are hyperelliptic):
- $y^2=2 x^6+24 x^5+9 x^4+21 x^3+15 x^2+11 x+11$
- $y^2=16 x^6+7 x^5+21 x^4+8 x^3+24 x^2+22 x+8$
- $y^2=10 x^6+17 x^5+29 x^4+21 x^3+29 x^2+22 x+26$
- $y^2=27 x^6+28 x^5+23 x^4+24 x^3+3 x^2+3 x+27$
- $y^2=3 x^6+23 x^5+27 x^4+30 x^3+19 x^2+26 x+29$
- $y^2=11 x^6+20 x^5+14 x^4+15 x^3+16 x^2+27 x+13$
- $y^2=18 x^6+30 x^5+22 x^4+25 x^3+22 x^2+26 x+23$
- $y^2=30 x^6+18 x^5+24 x^4+12 x^3+10 x^2+5 x+27$
- $y^2=18 x^6+13 x^5+14 x^4+17 x^3+6 x^2+29 x+19$
- $y^2=27 x^6+19 x^5+20 x^4+11 x^3+23 x+28$
- $y^2=11 x^6+7 x^5+6 x^4+11 x^2+22 x+13$
- $y^2=14 x^6+10 x^5+20 x^4+2 x^3+2 x^2+30 x+7$
- $y^2=x^6+3 x^5+6 x^4+3 x^3+4 x^2+9 x+23$
- $y^2=4 x^6+26 x^5+14 x^4+23 x^3+26 x^2+12 x+24$
- $y^2=13 x^5+23 x^4+10 x^3+25 x^2+8 x+19$
- $y^2=12 x^6+24 x^5+7 x^4+21 x^3+7 x+14$
- $y^2=21 x^6+14 x^5+x^4+23 x^3+23 x^2+12 x+4$
- $y^2=26 x^6+5 x^5+30 x^4+30 x^3+11 x^2+22 x+17$
- $y^2=x^5+8 x^4+22 x^3+16 x^2+25 x+26$
- $y^2=9 x^6+30 x^5+5 x^4+12 x^3+20 x^2+3 x+21$
- and 94 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{4}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{61})\). |
The base change of $A$ to $\F_{31^{4}}$ is 1.923521.cmo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-61}) \)$)$ |
- Endomorphism algebra over $\F_{31^{2}}$
The base change of $A$ to $\F_{31^{2}}$ is the simple isogeny class 2.961.a_cmo and its endomorphism algebra is \(\Q(i, \sqrt{61})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.c_c | $2$ | (not in LMFDB) |
2.31.a_aci | $8$ | (not in LMFDB) |
2.31.a_ci | $8$ | (not in LMFDB) |