Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 242 x^{2} - 1958 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.0585349918242$, $\pm0.441465008176$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{57})\) |
Galois group: | $C_2^2$ |
Jacobians: | $64$ |
Isomorphism classes: | 126 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6184$ | $62730496$ | $496593708712$ | $3935115128406016$ | $31180550303642832424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $7922$ | $704420$ | $62718750$ | $5583849988$ | $496981290962$ | $44231343944548$ | $3936588780734014$ | $350356402627473860$ | $31181719929966183602$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=53 x^6+24 x^5+24 x^4+47 x^3+28 x^2+32 x+60$
- $y^2=62 x^6+27 x^5+77 x^4+58 x^3+72 x^2+68 x+82$
- $y^2=59 x^6+21 x^5+59 x^4+50 x^3+52 x^2+57 x+25$
- $y^2=60 x^6+x^5+39 x^4+22 x^3+51 x^2+59 x+77$
- $y^2=23 x^6+65 x^5+85 x^4+28 x^3+68 x^2+68 x+15$
- $y^2=8 x^6+75 x^5+56 x^4+33 x^3+81 x^2+42 x+27$
- $y^2=85 x^6+43 x^5+68 x^4+35 x^3+75 x+6$
- $y^2=33 x^6+45 x^5+17 x^4+15 x^3+69 x^2+27 x+19$
- $y^2=6 x^6+48 x^5+63 x^4+49 x^3+25 x^2+86 x+28$
- $y^2=75 x^6+42 x^5+66 x^4+32 x^3+72 x^2+75 x+54$
- $y^2=39 x^6+85 x^5+10 x^4+23 x^3+80 x^2+41 x+75$
- $y^2=23 x^6+72 x^5+54 x^4+8 x^3+30 x^2+42 x+29$
- $y^2=19 x^6+60 x^5+56 x^4+12 x^3+42 x^2+44 x+6$
- $y^2=33 x^6+63 x^5+2 x^4+x^3+69 x^2+54 x+65$
- $y^2=55 x^6+82 x^5+88 x^4+49 x^3+41 x^2+18 x+43$
- $y^2=53 x^6+88 x^5+22 x^4+51 x^3+56 x^2+40 x+74$
- $y^2=52 x^6+68 x^5+40 x^4+27 x^3+35 x^2+32 x+27$
- $y^2=2 x^6+86 x^5+15 x^4+38 x^3+52 x^2+87 x+76$
- $y^2=69 x^6+66 x^5+67 x^4+79 x^3+69 x^2+40 x+34$
- $y^2=54 x^6+58 x^5+25 x^4+38 x^3+70 x^2+69 x+77$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{4}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{57})\). |
The base change of $A$ to $\F_{89^{4}}$ is 1.62742241.arju 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
- Endomorphism algebra over $\F_{89^{2}}$
The base change of $A$ to $\F_{89^{2}}$ is the simple isogeny class 2.7921.a_arju and its endomorphism algebra is \(\Q(i, \sqrt{57})\).
Base change
This is a primitive isogeny class.