Properties

Label 2.59.s_gg
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 + 18 x + 162 x^{2} + 1062 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.560815078026$, $\pm0.939184921974$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{37})\)
Galois group:  $C_2^2$
Jacobians:  $20$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4724$ $12112336$ $42236022692$ $146708683376896$ $511170045106071524$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $78$ $3482$ $205650$ $12107310$ $714998838$ $42180533642$ $2488649145018$ $146830435552414$ $8662995975170430$ $511116753300641402$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59^{4}}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{37})\).
Endomorphism algebra over $\overline{\F}_{59}$
The base change of $A$ to $\F_{59^{4}}$ is 1.12117361.ahli 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-37}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.as_gg$2$(not in LMFDB)
2.59.a_abs$8$(not in LMFDB)
2.59.a_bs$8$(not in LMFDB)