# Stored data for abelian variety isogeny class 2.59.s_gg, downloaded from the LMFDB on 08 October 2025. {"abvar_count": 4724, "abvar_counts": [4724, 12112336, 42236022692, 146708683376896, 511170045106071524, 1779197418295278128464, 6193380389942829239356724, 21559177105794147551405543424, 75047497909926004433797529084372, 261240335504588723278529165388759376], "abvar_counts_str": "4724 12112336 42236022692 146708683376896 511170045106071524 1779197418295278128464 6193380389942829239356724 21559177105794147551405543424 75047497909926004433797529084372 261240335504588723278529165388759376 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.56081507802603, 0.93918492197397], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 78, "curve_counts": [78, 3482, 205650, 12107310, 714998838, 42180533642, 2488649145018, 146830435552414, 8662995975170430, 511116753300641402], "curve_counts_str": "78 3482 205650 12107310 714998838 42180533642 2488649145018 146830435552414 8662995975170430 511116753300641402 ", "curves": ["y^2=46*x^6+48*x^5+22*x^4+29*x^3+56*x^2+11*x+1", "y^2=19*x^6+27*x^5+22*x^4+57*x^3+44*x^2+5*x+39", "y^2=26*x^6+26*x^5+17*x^4+35*x^3+32*x+27", "y^2=49*x^6+47*x^5+48*x^4+26*x^3+22*x^2+7*x+14", "y^2=46*x^6+47*x^5+13*x^4+41*x^3+x^2+27*x+41", "y^2=36*x^6+38*x^5+2*x^4+55*x^3+38*x^2+46", "y^2=29*x^6+3*x^5+13*x^4+10*x^3+47*x^2+33*x+19", "y^2=44*x^6+5*x^5+6*x^4+41*x^3+27*x^2+4*x+14", "y^2=7*x^6+48*x^5+26*x^4+8*x^3+6*x^2+45*x+22", "y^2=57*x^6+28*x^5+42*x^4+41*x^3+3*x^2+37*x+48", "y^2=29*x^6+54*x^5+19*x^4+35*x^3+50*x^2+6*x+26", "y^2=57*x^6+37*x^5+10*x^4+41*x^3+14*x^2+2*x+4", "y^2=2*x^6+8*x^5+57*x^4+32*x^3+24*x^2+42*x+20", "y^2=21*x^6+42*x^5+45*x^4+48*x^3+51*x^2+58*x+19", "y^2=10*x^6+5*x^5+19*x^4+49*x^3+45*x^2+49*x+2", "y^2=26*x^6+3*x^5+55*x^4+55*x^2+56*x+26", "y^2=20*x^6+11*x^5+x^4+9*x^3+22*x^2+26*x+31", "y^2=21*x^6+14*x^5+28*x^4+34*x^3+40*x^2+32*x+53", "y^2=36*x^6+45*x^5+51*x^4+9*x^3+7*x^2+46*x+21", "y^2=40*x^6+56*x^5+16*x^4+48*x^3+52*x^2+28*x+16"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 4, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.148.1"], "geometric_splitting_field": "2.0.148.1", "geometric_splitting_polynomials": [[37, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 20, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 20, "label": "2.59.s_gg", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 8, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.21904.1"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 18, 162, 1062, 3481], "poly_str": "1 18 162 1062 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, 18, 44], "simple_distinct": ["2.59.s_gg"], "simple_factors": ["2.59.s_ggA"], "simple_multiplicities": [1], "singular_primes": ["2,F+1", "11,4*F^2+17*F+6*V+103"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.21904.1", "splitting_polynomials": [[81, 0, 19, 0, 1]], "twist_count": 4, "twists": [["2.59.as_gg", "2.3481.a_ahli", 2], ["2.59.a_abs", "2.146830437604321.aemtjo_cchhhhazqtq", 8], ["2.59.a_bs", "2.146830437604321.aemtjo_cchhhhazqtq", 8]], "weak_equivalence_count": 6, "zfv_index": 44, "zfv_index_factorization": [[2, 2], [11, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 1936, "zfv_singular_count": 4, "zfv_singular_primes": ["2,F+1", "11,4*F^2+17*F+6*V+103"]}