L(s) = 1 | − 2-s − 4-s − 2·7-s + 3·8-s − 4·9-s + 2·13-s + 2·14-s − 16-s + 4·18-s − 2·26-s + 2·28-s + 8·29-s − 5·32-s + 4·36-s − 8·37-s − 2·47-s − 10·49-s − 2·52-s − 6·56-s − 8·58-s + 8·63-s + 7·64-s + 22·67-s − 12·72-s − 4·73-s + 8·74-s + 7·81-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 0.755·7-s + 1.06·8-s − 4/3·9-s + 0.554·13-s + 0.534·14-s − 1/4·16-s + 0.942·18-s − 0.392·26-s + 0.377·28-s + 1.48·29-s − 0.883·32-s + 2/3·36-s − 1.31·37-s − 0.291·47-s − 1.42·49-s − 0.277·52-s − 0.801·56-s − 1.05·58-s + 1.00·63-s + 7/8·64-s + 2.68·67-s − 1.41·72-s − 0.468·73-s + 0.929·74-s + 7/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.502148767745462064307435277978, −8.195608794202196063992207406336, −7.64281219886484213770916841228, −6.99517732346350733966524142977, −6.55579030262102705885825381949, −6.15610820083616662019819838937, −5.58364198280950482351523022626, −5.00194093461418000275326246636, −4.69645527741399380369062909292, −3.74207331567753203247718779207, −3.45933053356887752025656521234, −2.79804707834057758971541082257, −2.00676274304805294037655770739, −0.979266316456152354006782295374, 0,
0.979266316456152354006782295374, 2.00676274304805294037655770739, 2.79804707834057758971541082257, 3.45933053356887752025656521234, 3.74207331567753203247718779207, 4.69645527741399380369062909292, 5.00194093461418000275326246636, 5.58364198280950482351523022626, 6.15610820083616662019819838937, 6.55579030262102705885825381949, 6.99517732346350733966524142977, 7.64281219886484213770916841228, 8.195608794202196063992207406336, 8.502148767745462064307435277978